Documentation Verification Report

Defs

πŸ“ Source: Mathlib/LinearAlgebra/AffineSpace/AffineSubspace/Defs.lean

Statistics

MetricCount
Definitionscarrier, direction, directionOfNonempty, gi, instCompleteLattice, instInhabited, instPartialOrder, instSetLike, mk', toAffineSubspace, affineSpan, spanPoints, vectorSpan, Β«termLine[_,_,_]Β»
14
TheoremsaffineSpan_coe, affineSpan_eq_sInf, affineSpan_eq_top_iff_vectorSpan_eq_top_of_nonempty, affineSpan_eq_top_iff_vectorSpan_eq_top_of_nontrivial, bot_coe, bot_ne_top, card_pos_of_affineSpan_eq_top, coe_direction_eq_vsub_set, coe_direction_eq_vsub_set_left, coe_direction_eq_vsub_set_right, coe_eq_bot_iff, coe_eq_univ_iff, coe_iInf, coe_inf, coe_injective, coe_sInf, directionOfNonempty_eq_direction, direction_bot, direction_eq_top_iff_of_nonempty, direction_eq_vectorSpan, direction_iInf, direction_iInf_of_mem, direction_iInf_of_mem_iInf, direction_inf, direction_inf_of_mem, direction_inf_of_mem_inf, direction_le, direction_mk', direction_sInf, direction_sInf_of_mem, direction_sInf_of_mem_sInf, direction_top, eq_bot_or_nonempty, eq_iff_direction_eq_of_mem, eq_of_direction_eq_of_nonempty_of_le, exists_of_lt, ext, ext_iff, ext_of_direction_eq, inf_coe, instIsSimpleOrderOfSubsingleton, instNonemptySubtypeMemMk', instNonemptySubtypeMemTop, instNontrivial, inter_eq_singleton_of_nonempty_of_isCompl, inter_nonempty_of_nonempty_of_sup_direction_eq_top, isEmpty_bot, le_def, le_def', lt_def, lt_iff_le_and_exists, mem_coe, mem_direction_iff_eq_vsub, mem_direction_iff_eq_vsub_left, mem_direction_iff_eq_vsub_right, mem_iInf_iff, mem_inf_iff, mem_mk', mem_sInf_iff, mem_top, mk'_eq, mk'_nonempty, mk'_top, nonempty_iff_ne_bot, nonempty_of_affineSpan_eq_top, nonempty_sup_left, nonempty_sup_right, notMem_bot, not_le_iff_exists, self_mem_mk', smul_vsub_vadd_mem, spanPoints_subset_coe_of_subset_coe, span_empty, span_iUnion, span_union, span_univ, sup_direction_le, sup_direction_lt_of_nonempty_of_inter_empty, top_coe, vadd_mem_iff_mem_direction, vadd_mem_iff_mem_of_mem_direction, vadd_mem_mk', vadd_mem_of_mem_direction, vectorSpan_eq_top_of_affineSpan_eq_top, vsub_mem_direction, affineSpan, mem_toAffineSubspace, toAffineSubspace_direction, affineSpan_eq_bot, affineSpan_eq_top_iff_nonempty_of_subsingleton, affineSpan_induction, affineSpan_induction', affineSpan_insert_affineSpan, affineSpan_insert_eq_affineSpan, affineSpan_insert_zero, affineSpan_le, affineSpan_le_of_subset_coe, affineSpan_le_toAffineSubspace_span, affineSpan_mono, affineSpan_nonempty, affineSpan_pair_le_of_left_mem, affineSpan_pair_le_of_mem_of_mem, affineSpan_pair_le_of_right_mem, affineSpan_subset_span, bot_lt_affineSpan, coe_affineSpan, direction_affineSpan, instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem, left_mem_affineSpan_pair, mem_affineSpan, mem_affineSpan_iff_exists, mem_spanPoints, right_mem_affineSpan_pair, smul_vsub_mem_vectorSpan_pair, smul_vsub_rev_mem_vectorSpan_pair, spanPoints_nonempty, subset_affineSpan, subset_spanPoints, vadd_mem_affineSpan_of_mem_affineSpan_of_mem_vectorSpan, vadd_mem_spanPoints_of_mem_spanPoints_of_mem_vectorSpan, vectorSpan_add_self, vectorSpan_def, vectorSpan_empty, vectorSpan_eq_bot_iff_subsingleton, vectorSpan_insert_eq_vectorSpan, vectorSpan_mono, vectorSpan_of_subsingleton, vectorSpan_singleton, vsub_mem_vectorSpan, vsub_mem_vectorSpan_of_mem_affineSpan_of_mem_affineSpan, vsub_mem_vectorSpan_of_mem_spanPoints_of_mem_spanPoints, vsub_mem_vectorSpan_pair, vsub_rev_mem_vectorSpan_pair, vsub_set_subset_vectorSpan
134
Total148

AffineSubspace

Definitions

NameCategoryTheorems
carrier πŸ“–CompOpβ€”
direction πŸ“–CompOp
226 mathmath: Affine.Simplex.altitudeFoot_restrict, direction_inf, coe_vsub, direction_sup_eq_sup_direction, Affine.Simplex.orthogonalProjectionSpan_map, EuclideanGeometry.vsub_orthogonalProjection_mem_direction_orthogonal, AffineMap.restrict.bijective, Affine.Simplex.finiteDimensional_direction_altitude, direction_affineSpan, Affine.Simplex.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, direction_inf_of_mem, Affine.Simplex.restrict_reindex, Affine.Simplex.faceOppositeCentroid_restrict, EuclideanGeometry.orthogonalProjection_congr, direction_le, AffineIsometryEquiv.ofTop_apply, finiteDimensional_direction_affineSpan_of_finite, Affine.Simplex.restrict_map_restrict, EuclideanGeometry.orthogonalProjection_contLinear, EuclideanGeometry.dist_orthogonalProjection_eq_iff_oangle_eq, coe_subtypeA, subtype_apply, direction_eq_top_iff_of_nonempty, EuclideanGeometry.reflection_vadd_smul_vsub_orthogonalProjection, EuclideanGeometry.inter_eq_singleton_orthogonalProjection, linear_topEquiv, Affine.Simplex.orthogonalProjectionSpan_eq_point, EuclideanGeometry.orthogonalProjection_map, vsub_mem_direction, Affine.Simplex.circumradius_restrict, Affine.Simplex.medial_restrict, EuclideanGeometry.angle_orthogonalProjection_self, EuclideanGeometry.orthogonalProjection_apply_mem, coe_subtypeₐᡒ, EuclideanGeometry.dist_orthogonalProjection_eq_iff_angle_eq, direction_affineSpan_insert, Affine.Simplex.finrank_direction_altitude, Submodule.toAffineSubspace_direction, Affine.Simplex.ninePointCircle_restrict, Affine.Simplex.face_restrict, finrank_vectorSpan_insert_le, Affine.Simplex.interior_restrict, inclusion_linear, EuclideanGeometry.orthogonalProjection_apply', Affine.Simplex.dist_sq_eq_dist_orthogonalProjection_sq_add_dist_orthogonalProjection_sq, EuclideanGeometry.Sphere.coe_secondInter, finiteDimensional_direction_map, EuclideanGeometry.orthogonalProjection_orthogonalProjection_of_le, EuclideanGeometry.Sphere.isTangent_iff_isTangentAt_orthogonalProjection, Affine.Triangle.dist_circumcenter_reflection_orthocenter, AffineIsometryEquiv.coe_ofEq_apply, Affine.Simplex.altitude_restrict_eq_comap_subtype, isometryEquivMap.toAffineMap_eq, signedInfDist_eq_signedDist_of_mem, Affine.Simplex.signedInfDist_apply_self, signedInfDist_eq_signedDist_orthogonalProjection, AffineEquiv.linear_ofEq, coe_direction_eq_vsub_set, AffineIsometryEquiv.ofTop_symm_apply_coe, Collinear.finiteDimensional_direction_affineSpan, finiteDimensional_direction_affineSpan_insert_set, Affine.Simplex.orthogonalProjectionSpan_congr, mem_direction_iff_eq_vsub, AffineIsometryEquiv.ofEq_symm, Affine.Simplex.vectorSpan_isOrtho_altitude_direction, parallel_iff_direction_eq_and_eq_bot_iff_eq_bot, asymptoticCone_affineSubspace, Coplanar.finiteDimensional_direction_affineSpan, Affine.Simplex.ExcenterExists.touchpointWeights_restrict, instIsTopologicalAddTorsorSubtypeMemSubmoduleDirection, EuclideanGeometry.orthogonalProjection_subtype, EuclideanGeometry.two_zsmul_oangle_self_orthogonalProjection, finiteDimensional_direction_affineSpan_insert, Affine.Simplex.ExcenterExists.excenter_restrict, toContinuousAffineMap_subtypeₐᡒ, finiteDimensional_direction_affineSpan_range, Parallel.direction_eq, Affine.Triangle.dist_orthocenter_reflection_circumcenter, EuclideanGeometry.oangle_orthogonalProjection_self, Affine.Simplex.map_altitude_restrict, Affine.Simplex.faceOpposite_restrict, EuclideanGeometry.dist_orthogonalProjection_eq_dist_iff_eq_of_mem, abs_signedInfDist_eq_dist_of_mem_affineSpan_insert, Affine.Simplex.exradius_restrict, EuclideanGeometry.reflection_apply_of_mem, direction_sup, Affine.Simplex.orthogonalProjection_circumcenter, direction_iInf_of_mem, subtypeA_toAffineMap, Affine.Simplex.exists_forall_dist_eq_iff_exists_excenterExists_and_eq_excenter, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_exists_dist_eq, Affine.Simplex.direction_mongePlane, coe_vadd, Affine.Simplex.circumcenter_restrict, AffineMap.restrict.injective, Affine.Simplex.height_restrict, EuclideanGeometry.orthogonalProjection_affineSpan_singleton, subtype_injective, subtype_linear, pointwise_vadd_direction, EuclideanGeometry.dist_sq_eq_dist_orthogonalProjection_sq_add_dist_orthogonalProjection_sq, topEquiv_symm_apply_coe, isometryEquivMap.coe_apply, EuclideanGeometry.Sphere.direction_orthRadius_le_iff, EuclideanGeometry.eq_or_eq_reflection_of_dist_eq, Affine.Simplex.incenter_restrict, EuclideanGeometry.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, eq_iff_direction_eq_of_mem, Affine.Simplex.orthogonalProjectionSpan_faceOpposite_eq_point_rev, EuclideanGeometry.dist_orthogonalProjection_eq_infNndist, direction_iInf, AffineMap.restrict.surjective, Affine.Simplex.inradius_restrict, subtypeₐᡒ_linear, map_direction, AffineMap.restrict.coe_apply, EuclideanGeometry.Sphere.dist_orthogonalProjection_eq_radius_iff_isTangent, direction_top, EuclideanGeometry.orthogonalProjection_eq_orthogonalProjection_iff_vsub_mem, EuclideanGeometry.dist_eq_iff_dist_orthogonalProjection_eq, Affine.Simplex.centroid_restrict, EuclideanGeometry.dist_orthogonalProjection_eq_infDist, direction_lt_of_nonempty, EuclideanGeometry.orthogonalProjection_mem, Affine.Simplex.orthogonalProjectionSpan_restrict, direction_eq_vectorSpan, Affine.Simplex.setInterior_restrict, finiteDimensional_sup, Affine.Simplex.excenterWeights_restrict, EuclideanGeometry.dist_orthogonalProjection_eq_zero_iff, AffineEquiv.ofEq_symm, AffineMap.restrict.linear_aux, EuclideanGeometry.exists_dist_eq_iff_exists_dist_orthogonalProjection_eq, linear_equivMapOfInjective, EuclideanGeometry.Sphere.IsTangentAt.eq_orthogonalProjection, Affine.Simplex.median_restrict, Affine.Triangle.dist_circumcenter_reflection_orthocenter_finset, affineSpan_coe_preimage_eq_top, direction_affineSpan_pair_le_iff_exists_smul, coe_direction_eq_vsub_set_left, EuclideanGeometry.reflection_eq_iff_orthogonalProjection_eq, Affine.Simplex.closedInterior_restrict, direction_sInf, EuclideanGeometry.orthogonalProjection_orthogonalProjection, EuclideanGeometry.orthogonalProjection_vsub_mem_direction, finiteDimensional_direction_affineSpan_image_of_finite, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_dist_eq, topEquiv_apply, Affine.Simplex.mongePoint_restrict, direction_iInf_of_mem_iInf, direction_sInf_of_mem, Affine.Simplex.eulerPoint_restrict, EuclideanGeometry.vsub_orthogonalProjection_mem_direction, coe_inclusion_apply, Affine.Simplex.ExcenterExists.touchpoint_restrict, signedInfDist_singleton, Affine.Simplex.coe_orthogonalProjection_vadd_smul_vsub_orthogonalProjection, vadd_mem_iff_mem_direction, Affine.Simplex.excenterWeightsUnnorm_restrict, subtypeₐᡒ_linearIsometry, direction_bot, EuclideanGeometry.Sphere.IsTangent.isTangentAt, sup_direction_le, EuclideanGeometry.reflection_apply', AffineIsometryEquiv.ofEq_rfl, EuclideanGeometry.oangle_self_orthogonalProjection, AffineEquiv.coe_ofEq_apply, direction_inf_of_mem_inf, mem_direction_iff_eq_vsub_right, AffineMap.restrict.linear, Affine.Simplex.abs_signedInfDist_eq_dist_of_mem_affineSpan_range, direction_smul, coe_subtype, Affine.Simplex.orthogonalProjectionSpan_reindex, directionOfNonempty_eq_direction, EuclideanGeometry.orthogonalProjection_linear, signedInfDist_def, Affine.Simplex.orthogonalProjectionSpan_eulerPoint_mem_ninePointCircle, Affine.Simplex.signedInfDist_affineCombination, EuclideanGeometry.angle_self_orthogonalProjection, direction_perpBisector, angle_coe, EuclideanGeometry.orthogonalProjection_eq_self_iff, EuclideanGeometry.reflection_subtype, isometryEquivMap.apply_symm_apply, inclusion_rfl, direction_mk', EuclideanGeometry.orthogonalProjection_vsub_mem_direction_orthogonal, vsub_right_mem_direction_iff_mem, EuclideanGeometry.eq_orthogonalProjection_of_eq_subspace, EuclideanGeometry.orthogonalProjection_apply, EuclideanGeometry.Sphere.direction_orthRadius, signedInfDist_apply_self, EuclideanGeometry.orthogonalProjection_vsub_orthogonalProjection, EuclideanGeometry.orthogonalProjection_mem_orthogonal, mem_direction_iff_eq_vsub_left, EuclideanGeometry.two_zsmul_oangle_orthogonalProjection_self, equivMapOfInjective_toFun, direction_sInf_of_mem_sInf, Affine.Simplex.reflection_circumcenter_eq_affineCombination_of_pointsWithCircumcenter, EuclideanGeometry.coe_orthogonalProjection_eq_iff_mem, Affine.Simplex.map_subtype_restrict, Affine.Simplex.restrict_map_subtype, subtypeₐᡒ_toAffineMap, Affine.Triangle.dist_orthocenter_reflection_circumcenter_finset, Affine.Simplex.affineSpan_pair_eq_altitude_iff, Affine.Simplex.direction_altitude, Affine.Simplex.restrict_map_inclusion, finiteDimensional_direction_affineSpan_singleton, EuclideanGeometry.dist_orthogonalProjection_line_eq_iff_two_zsmul_oangle_eq, EuclideanGeometry.orthogonalProjection_eq_iff_mem, EuclideanGeometry.dist_orthogonalProjection_line_eq_of_two_zsmul_oangle_eq, sup_direction_lt_of_nonempty_of_inter_empty, vsub_left_mem_direction_iff_mem, mk'_eq, EuclideanGeometry.Sphere.dist_orthogonalProjection_eq_radius_iff_isTangentAt, EuclideanGeometry.reflection_apply, AffineEquiv.ofEq_rfl, EuclideanGeometry.dist_set_eq_iff_dist_orthogonalProjection_eq, EuclideanGeometry.Sphere.finrank_orthRadius, isClosed_direction_iff, coe_direction_eq_vsub_set_right, Affine.Simplex.altitude_def, Affine.Simplex.restrict_points_coe, Affine.Simplex.excenterExists_restrict, EuclideanGeometry.orthogonalProjection_mem_subspace_eq_self
directionOfNonempty πŸ“–CompOp
1 mathmath: directionOfNonempty_eq_direction
gi πŸ“–CompOpβ€”
instCompleteLattice πŸ“–CompOp
90 mathmath: direction_inf, direction_sup_eq_sup_direction, direction_inf_of_mem, AffineBasis.tot, IsOpen.exists_subset_affineIndependent_span_eq_top, mem_sInf_iff, comap_bot, bot_lt_affineSpan, AffineEquiv.span_eq_top_iff, direction_eq_top_iff_of_nonempty, affineSpan_singleton_union_vadd_eq_top_of_span_eq_top, interior_convexHull_nonempty_iff_affineSpan_eq_top, linear_topEquiv, not_wSameSide_bot, span_iUnion, AffineBasis.tot', coe_eq_univ_iff, affineSpan_eq_sInf, EuclideanGeometry.Sphere.orthRadius_center, not_sSameSide_bot, AffineBasis.affineSpan_eq_top_of_toMatrix_left_inv, mem_iInf_iff, bot_coe, Convex.interior_nonempty_iff_affineSpan_eq_top, parallel_bot_iff_eq_bot, map_inf_eq, span_union, smul_bot, Affine.Simplex.mongePlane_def, parallel_iff_direction_eq_and_eq_bot_iff_eq_bot, mem_top, smul_top, AffineIndependent.inf_affineSpan_eq_affineSpan_inter, direction_sup, direction_iInf_of_mem, mk'_top, affineSpan_eq_top_iff_vectorSpan_eq_top_of_nonempty, topEquiv_symm_apply_coe, nonempty_sup_left, AffineMap.map_top_of_surjective, direction_iInf, coe_eq_bot_iff, direction_top, Affine.Simplex.span_eq_top, isEmpty_bot, exists_subset_affineIndependent_affineSpan_eq_top, perpBisector_eq_top, map_inf_le, pointwise_vadd_bot, finiteDimensional_sup, AffineIndependent.affineSpan_eq_top_iff_card_eq_finrank_add_one, not_sOppSide_bot, IsOpen.exists_between_affineIndependent_span_eq_top, top_coe, affineSpan_coe_preimage_eq_top, pointwise_vadd_top, nonempty_sup_right, perpBisector_self, span_empty, map_bot, affineSpan_eq_top_of_nonempty_interior, direction_sInf, instIsSimpleOrderOfSubsingleton, topEquiv_apply, direction_sInf_of_mem, span_univ, map_eq_bot_iff, direction_bot, AffineBasis.isUnit_toMatrix_iff, sup_direction_le, instNonemptySubtypeMemTop, affineSpan_eq_bot, comap_supr, map_sup, comap_top, mem_inf_iff, coe_iInf, affineSpan_eq_top_iff_vectorSpan_eq_top_of_nontrivial, IsOpen.affineSpan_eq_top, not_wOppSide_bot, EuclideanGeometry.orthogonalProjection_sup_of_orthogonalProjection_eq, eq_bot_or_nonempty, map_iSup, bot_parallel_iff_eq_bot, sup_direction_lt_of_nonempty_of_inter_empty, notMem_bot, Affine.Simplex.altitude_def, comap_inf, coe_sInf, affineSpan_eq_top_iff_nonempty_of_subsingleton
instInhabited πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
29 mathmath: AffineMap.restrict.bijective, affineSpan_le_toAffineSubspace_span, bot_lt_affineSpan, Affine.Simplex.affineSpan_face_le, le_def', affineSpan_pair_le_of_mem_of_mem, le_def, lt_def, affineSpan_le, Affine.Simplex.affineSpan_faceOpposite_le, Affine.Triangle.affineSpan_orthocenter_point_le_altitude, EuclideanGeometry.Sphere.IsTangentAt.le_orthRadius, AffineMap.restrict.surjective, affineSpan_pair_le_of_left_mem, affineSpan_le_of_subset_coe, map_comap_le, map_inf_le, gc_map_comap, instIsSimpleOrderOfSubsingleton, not_le_iff_exists, affineSpan_pair_le_of_right_mem, EuclideanGeometry.Sphere.orthRadius_le_orthRadius_iff, map_le_iff_le_comap, le_comap_map, affineSpan_mono, inclusion_rfl, Affine.Simplex.map_subtype_restrict, Affine.Simplex.restrict_map_subtype, lt_iff_le_and_exists
instSetLike πŸ“–CompOp
330 mathmath: Affine.Simplex.altitudeFoot_restrict, Affine.Simplex.faceOppositeCentroid_mem_affineSpan_face, coe_vsub, Affine.Simplex.orthogonalProjectionSpan_map, EuclideanGeometry.vsub_orthogonalProjection_mem_direction_orthogonal, AffineMap.restrict.bijective, Isometry.preimage_perpBisector, Submodule.mem_toAffineSubspace, Affine.Simplex.ExcenterExists.excenter_notMem_affineSpan_face, self_mem_mk', mem_perpBisector_iff_inner_eq_zero', Affine.Simplex.ExcenterExists.excenter_notMem_affineSpan_faceOpposite, smul_mem_smul_iffβ‚€, Affine.Simplex.circumcenter_mem_affineSpan, Affine.Simplex.restrict_reindex, Affine.Simplex.excenter_singleton_mem_affineSpan_range, Affine.Simplex.faceOppositeCentroid_restrict, EuclideanGeometry.orthogonalProjection_congr, AffineIsometryEquiv.ofTop_apply, mem_sInf_iff, AffineMap.eqOn_affineSpan, EuclideanGeometry.Sphere.mem_orthRadius_iff_inner_right, left_mem_perpBisector, EuclideanGeometry.preimage_inversion_perpBisector_inversion, SSameSide.right_notMem, AffineMap.lineMap_rev_mem_affineSpan_pair, vadd_right_mem_affineSpan_pair, Affine.Simplex.restrict_map_restrict, EuclideanGeometry.orthogonalProjection_contLinear, WSameSide.nonempty, coe_subtypeA, Affine.Simplex.point_mem_median, subtype_apply, EuclideanGeometry.Sphere.mem_tangentsFrom_iff, vadd_mem_mk', smul_vsub_rev_vadd_mem_affineSpan_pair, EuclideanGeometry.inter_eq_singleton_orthogonalProjection, EuclideanGeometry.inversion_mem_perpBisector_inversion_iff', Sbtw.left_mem_affineSpan, linear_topEquiv, Affine.Simplex.orthogonalProjectionSpan_eq_point, EuclideanGeometry.orthogonalProjection_map, Collinear.mem_affineSpan_of_mem_of_ne, Affine.Simplex.circumradius_restrict, Affine.Simplex.ExcenterExists.touchpoint_notMem_affineSpan_of_ne, Affine.Simplex.medial_restrict, wOppSide_iff_exists_wbtw, SOppSide.nonempty, AffineIndependent.mem_affineSpan_iff, coe_subtypeₐᡒ, EuclideanGeometry.Sphere.IsTangentAt.mem_space, mem_perpBisector_iff_inner_eq_zero, perpBisector_nonempty, Affine.Simplex.altitudeFoot_mem_affineSpan_image_compl, sSameSide_self_iff, Affine.Simplex.mongePoint_mem_mongePlane, wOppSide_self_iff, coe_eq_univ_iff, affineCombination_mem_affineSpan_pair, mem_intrinsicFrontier, Affine.Simplex.ninePointCircle_restrict, le_def', Affine.Simplex.face_restrict, affineSpan_eq_sInf, finrank_vectorSpan_insert_le, coe_smul, Affine.Simplex.interior_restrict, inclusion_linear, EuclideanGeometry.orthogonalProjection_apply', EuclideanGeometry.Sphere.coe_secondInter, EuclideanGeometry.orthogonalProjection_orthogonalProjection_of_le, mem_affineSpan_iff_eq_affineCombination, EuclideanGeometry.Sphere.isTangent_iff_isTangentAt_orthogonalProjection, affineCombination_mem_affineSpan, le_def, mem_iInf_iff, EuclideanGeometry.preimage_inversion_perpBisector, WOppSide.nonempty, bot_coe, Isometry.mapsTo_perpBisector, AffineIsometryEquiv.coe_ofEq_apply, inf_coe, Affine.Simplex.altitude_restrict_eq_comap_subtype, isometryEquivMap.toAffineMap_eq, lt_def, Affine.Simplex.signedInfDist_apply_self, Affine.Simplex.centroid_notMem_affineSpan_of_ne_univ, coe_inf, wSameSide_and_wOppSide_iff, signedInfDist_eq_signedDist_orthogonalProjection, AffineEquiv.linear_ofEq, coe_pointwise_vadd, Affine.Simplex.incenter_notMem_affineSpan_face, AffineIsometryEquiv.ofTop_symm_apply_coe, Affine.Simplex.orthogonalProjectionSpan_congr, EuclideanGeometry.image_inversion_perpBisector, AffineIsometryEquiv.ofEq_symm, SOppSide.right_notMem, EuclideanGeometry.reflection_eq_self_iff, Affine.Simplex.altitudeFoot_mem_affineSpan, Affine.Simplex.ExcenterExists.touchpointWeights_restrict, affineSpan_le, smul_vsub_vadd_mem_affineSpan_pair, right_mem_affineSpan_pair, instIsTopologicalAddTorsorSubtypeMemSubmoduleDirection, mem_top, mem_affineSpan_pair_iff_exists_lineMap_rev_eq, EuclideanGeometry.image_inversion_sphere_dist_center, EuclideanGeometry.orthogonalProjection_subtype, finiteDimensional_direction_affineSpan_insert, Affine.Simplex.ExcenterExists.excenter_restrict, Affine.Simplex.points_mem_affineSpan_face, closed_of_finiteDimensional, toContinuousAffineMap_subtypeₐᡒ, Affine.Simplex.points_mem_affineSpan_faceOpposite, mem_affineSpan, Affine.Simplex.circumsphere_unique_dist_eq, smul_mem_smul_iff_of_isUnit, EuclideanGeometry.preimage_inversion_sphere_dist_center, Affine.Simplex.map_altitude_restrict, Affine.Simplex.faceOpposite_restrict, convex, affineSpan_subset_span, Affine.Simplex.exradius_restrict, Affine.Simplex.orthogonalProjection_circumcenter, centroid_mem_affineSpan_of_nonempty, subtypeA_toAffineMap, vadd_mem_iff_mem_of_mem_direction, mem_map, mem_map_iff_mem_of_injective, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_exists_dist_eq, Affine.Simplex.touchpoint_mem_affineSpan, coe_vadd, Affine.Simplex.altitudeFoot_mem_altitude, coe_affineSpan, Affine.Simplex.circumcenter_restrict, AffineMap.restrict.injective, Affine.Simplex.height_restrict, EuclideanGeometry.orthogonalProjection_affineSpan_singleton, subtype_injective, subtype_linear, affineCombination_mem_affineSpan_image, EuclideanGeometry.Sphere.mem_of_mem_tangentsFrom, topEquiv_symm_apply_coe, isometryEquivMap.coe_apply, Affine.Simplex.mem_affineSpan_image_iff, mem_comap, nonempty_sup_left, centroid_mem_affineSpan_of_cast_card_ne_zero, intrinsicClosure_eq_closure_inter_affineSpan, exists_of_lt, EuclideanGeometry.Sphere.IsTangentAt.mem_and_mem_iff_eq, wSameSide_self_iff, Affine.Simplex.incenter_restrict, mem_perpBisector_iff_inner_eq_inner, EuclideanGeometry.Sphere.IsTangent.infDist_eq_radius, mk'_nonempty, mem_affineSpan_pair_iff_exists_lineMap_eq, EuclideanGeometry.Sphere.IsTangent.notMem_of_dist_lt, Affine.Simplex.orthogonalProjectionSpan_faceOpposite_eq_point_rev, EuclideanGeometry.exists_dist_eq_circumradius_of_subset_insert_orthocenter, EuclideanGeometry.dist_orthogonalProjection_eq_infNndist, coe_eq_bot_iff, SOppSide.left_notMem, MeasureTheory.Measure.addHaar_affineSubspace, Affine.Simplex.ExcenterExists.excenter_notMem_affineSpan_pair, AffineMap.restrict.surjective, Affine.Simplex.inradius_restrict, subtypeₐᡒ_linear, AffineMap.restrict.coe_apply, mem_affineSpan_iff_eq_weightedVSubOfPoint_vadd, mem_affineSpan_iff_exists, subset_affineSpan, left_mem_affineSpan_pair, EuclideanGeometry.Sphere.dist_orthogonalProjection_eq_radius_iff_isTangent, EuclideanGeometry.orthogonalProjection_eq_orthogonalProjection_iff_vsub_mem, isEmpty_bot, Affine.Simplex.centroid_restrict, mem_perpBisector_iff_dist_eq', Affine.Simplex.ninePointCircle_center_mem_affineSpan, Affine.Simplex.affineCombination_mem_affineSpan_faceOpposite_iff, EuclideanGeometry.dist_orthogonalProjection_eq_infDist, EuclideanGeometry.orthogonalProjection_mem, Affine.Simplex.orthogonalProjectionSpan_restrict, midpoint_mem_perpBisector, direction_eq_vectorSpan, EuclideanGeometry.Sphere.center_mem_orthRadius_iff, Affine.Simplex.setInterior_restrict, Affine.Simplex.ExcenterExists.excenter_mem_affineSpan_range, ext_iff, Affine.Triangle.orthocenter_mem_altitude, Affine.Simplex.excenterWeights_restrict, EuclideanGeometry.dist_orthogonalProjection_eq_zero_iff, AffineEquiv.ofEq_symm, smul_mem_smul_iff, linear_equivMapOfInjective, EuclideanGeometry.Sphere.IsTangentAt.eq_orthogonalProjection, top_coe, Affine.Simplex.median_restrict, Affine.Simplex.points_notMem_affineSpan_faceOpposite, EuclideanGeometry.Sphere.secondInter_vsub_mem_affineSpan, affineSpan_coe_preimage_eq_top, nonempty_sup_right, EuclideanGeometry.reflection_eq_iff_orthogonalProjection_eq, Affine.Simplex.closedInterior_restrict, Affine.Simplex.incenter_mem_affineSpan_range, EuclideanGeometry.orthogonalProjection_orthogonalProjection, vectorSpan_add_self, not_le_iff_exists, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_dist_eq, Affine.Simplex.incenter_notMem_affineSpan_pair, preimage_coe_affineSpan_singleton, topEquiv_apply, affineSegment_subset_affineSpan, Affine.Simplex.mongePoint_restrict, mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero, affineCombination_mem_affineSpan_of_nonempty, Affine.Simplex.eulerPoint_restrict, Affine.Simplex.faceOppositeCentroid_mem_median, coe_inclusion_apply, EuclideanGeometry.inversion_mem_perpBisector_inversion_iff, Affine.Simplex.ExcenterExists.touchpoint_restrict, affineSpan_nonempty, Affine.Simplex.excenterWeightsUnnorm_restrict, subtypeₐᡒ_linearIsometry, Affine.Triangle.orthocenter_mem_affineSpan, Affine.Simplex.mongePoint_mem_affineSpan, EuclideanGeometry.Sphere.IsTangent.isTangentAt, instNonemptySubtypeMemTop, IsClosed.convexHull_subset_affineSpan_isVisible, mem_perpBisector_iff_dist_eq, EuclideanGeometry.reflection_apply', AffineIsometryEquiv.ofEq_rfl, mem_fintypeAffineCoords_iff_sum, Affine.Simplex.centroid_mem_median, AffineEquiv.coe_ofEq_apply, EuclideanGeometry.Sphere.isTangentAt_center_iff, AffineMap.restrict.linear, instNonemptySubtypeMemMk', coe_subtype, Affine.Simplex.orthogonalProjectionSpan_reindex, Affine.Simplex.touchpoint_empty_notMem_affineSpan_of_ne, EuclideanGeometry.orthogonalProjection_linear, signedInfDist_def, vadd_mem_pointwise_vadd_iff, Affine.Simplex.mem_altitude, Affine.Simplex.orthogonalProjectionSpan_eulerPoint_mem_ninePointCircle, AffineIndependent.injOn_affineCombination_fintypeAffineCoords, centroid_mem_affineSpan_of_card_eq_add_one, mem_mk', mem_affineSpan_singleton, Affine.Simplex.signedInfDist_affineCombination, EuclideanGeometry.Sphere.mem_commonIntTangents_iff, angle_coe, mem_inf_iff, EuclideanGeometry.orthogonalProjection_eq_self_iff, mem_perpBisector_iff_inner_eq, EuclideanGeometry.reflection_subtype, Set.Nonempty.affineSpan, isometryEquivMap.apply_symm_apply, SSameSide.left_notMem, inclusion_rfl, coe_injective, SOppSide.exists_sbtw, coe_iInf, EuclideanGeometry.orthogonalProjection_vsub_mem_direction_orthogonal, Affine.Simplex.setInterior_subset_affineSpan, Affine.Simplex.touchpoint_mem_affineSpan_simplex, EuclideanGeometry.eq_orthogonalProjection_of_eq_subspace, Sbtw.right_mem_affineSpan, EuclideanGeometry.orthogonalProjection_apply, AffineIndependent.affineSpan_disjoint_of_disjoint, AffineIndependent.existsUnique_dist_eq, signedInfDist_apply_self, EuclideanGeometry.orthogonalProjection_vsub_orthogonalProjection, EuclideanGeometry.orthogonalProjection_mem_orthogonal, Wbtw.mem_affineSpan, mem_intrinsicInterior, nonempty_map, centroid_mem_affineSpan_of_card_ne_zero, equivMapOfInjective_toFun, instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem, Wbtw.left_mem_affineSpan_of_right_ne, EuclideanGeometry.coe_orthogonalProjection_eq_iff_mem, eq_bot_or_nonempty, Affine.Simplex.map_subtype_restrict, mem_finsuppAffineCoords_iff_linearCombination, Wbtw.right_mem_affineSpan_of_left_ne, Affine.Simplex.restrict_map_subtype, AffineIndependent.notMem_affineSpan_diff, subtypeₐᡒ_toAffineMap, mem_perpBisector_pointReflection_iff_inner_eq_zero, mem_coe, Affine.Simplex.altitudeFoot_mem_affineSpan_faceOpposite, AffineMap.lineMap_mem_affineSpan_pair, Affine.Simplex.affineSpan_pair_eq_altitude_iff, Affine.Simplex.closedInterior_subset_affineSpan, Affine.Simplex.restrict_map_inclusion, EuclideanGeometry.dist_orthogonalProjection_line_eq_iff_two_zsmul_oangle_eq, EuclideanGeometry.orthogonalProjection_eq_iff_mem, EuclideanGeometry.dist_orthogonalProjection_line_eq_of_two_zsmul_oangle_eq, affineSpan_insert_affineSpan, coe_comap, nonempty_iff_ne_bot, SSameSide.nonempty, affineSpan_insert_zero, Affine.Simplex.incenter_notMem_affineSpan_faceOpposite, convexHull_subset_affineSpan, affineSpan_coe, right_mem_perpBisector, EuclideanGeometry.Sphere.dist_orthogonalProjection_eq_radius_iff_isTangentAt, EuclideanGeometry.reflection_apply, EuclideanGeometry.Sphere.mem_orthRadius_iff_inner_left, Affine.Simplex.centroid_mem_affineSpan, AffineEquiv.ofEq_rfl, notMem_bot, isClosed_direction_iff, finiteDimensional_vectorSpan_insert, coe_affineSpan_singleton, EuclideanGeometry.Sphere.infDist_eq_radius_iff_isTangent, vadd_left_mem_affineSpan_pair, intrinsicClosure_subset_affineSpan, lt_iff_le_and_exists, Affine.Simplex.restrict_points_coe, EuclideanGeometry.Sphere.self_mem_orthRadius, Affine.Simplex.excenterExists_restrict, coe_sInf, mem_intrinsicClosure, EuclideanGeometry.orthogonalProjection_mem_subspace_eq_self, coe_map
mk' πŸ“–CompOp
13 mathmath: self_mem_mk', vadd_mem_mk', EuclideanGeometry.inter_eq_singleton_orthogonalProjection, map_mk', Affine.Simplex.mongePlane_def, mk'_top, mk'_nonempty, instNonemptySubtypeMemMk', mem_mk', direction_mk', EuclideanGeometry.orthogonalProjection_mem_orthogonal, mk'_eq, Affine.Simplex.altitude_def

Theorems

NameKindAssumesProvesValidatesDepends On
affineSpan_coe πŸ“–mathematicalβ€”affineSpan
SetLike.coe
AffineSubspace
instSetLike
β€”le_antisymm
vadd_mem_of_mem_direction
subset_affineSpan
affineSpan_eq_sInf πŸ“–mathematicalβ€”affineSpan
InfSet.sInf
AffineSubspace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
setOf
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”le_antisymm
affineSpan_le_of_subset_coe
Set.subset_iInterβ‚‚
sInf_le
subset_spanPoints
affineSpan_eq_top_iff_vectorSpan_eq_top_of_nonempty πŸ“–mathematicalSet.NonemptyaffineSpan
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
vectorSpan
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instTop
β€”vectorSpan_eq_top_of_affineSpan_eq_top
mem_affineSpan
eq_iff_direction_eq_of_mem
mem_top
direction_affineSpan
direction_top
affineSpan_eq_top_iff_vectorSpan_eq_top_of_nontrivial πŸ“–mathematicalβ€”affineSpan
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
vectorSpan
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instTop
β€”Set.eq_empty_or_nonempty
span_empty
instNontrivial
vectorSpan_empty
AddTorsor.subsingleton_iff
affineSpan_eq_top_iff_vectorSpan_eq_top_of_nonempty
bot_coe πŸ“–mathematicalβ€”SetLike.coe
AffineSubspace
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set
Set.instEmptyCollection
β€”β€”
bot_ne_top πŸ“–β€”β€”β€”β€”Set.empty_ne_univ
AddTorsor.nonempty
top_coe
bot_coe
ext_iff
card_pos_of_affineSpan_eq_top πŸ“–mathematicalaffineSpan
Set.range
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Fintype.cardβ€”nonempty_of_affineSpan_eq_top
Fintype.card_pos_iff
coe_direction_eq_vsub_set πŸ“–mathematicalSet.Nonempty
SetLike.coe
AffineSubspace
instSetLike
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
direction
VSub.vsub
Set
Set.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”directionOfNonempty_eq_direction
coe_direction_eq_vsub_set_left πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
SetLike.coe
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
direction
Set.image
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”Set.ext
SetLike.mem_coe
Submodule.neg_mem_iff
coe_direction_eq_vsub_set_right
Set.mem_image
neg_vsub_eq_vsub_rev
coe_direction_eq_vsub_set_right πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
SetLike.coe
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
direction
Set.image
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”coe_direction_eq_vsub_set
le_antisymm
vadd_mem_of_mem_direction
vsub_mem_direction
vadd_vsub
coe_eq_bot_iff πŸ“–mathematicalβ€”SetLike.coe
AffineSubspace
instSetLike
Set
Set.instEmptyCollection
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”coe_injective
bot_coe
coe_eq_univ_iff πŸ“–mathematicalβ€”SetLike.coe
AffineSubspace
instSetLike
Set.univ
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”coe_injective
top_coe
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
AffineSubspace
instSetLike
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Set.iInter
β€”iInf.eq_1
coe_sInf
Set.biInter_range
coe_inf πŸ“–mathematicalβ€”Set
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
SetLike.coe
AffineSubspace
instSetLike
Set.instInter
β€”β€”
coe_injective πŸ“–mathematicalβ€”AffineSubspace
Set
SetLike.coe
instSetLike
β€”SetLike.coe_injective
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
AffineSubspace
instSetLike
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Set.iInter
Set
Set.instMembership
β€”β€”
directionOfNonempty_eq_direction πŸ“–mathematicalSet.Nonempty
SetLike.coe
AffineSubspace
instSetLike
directionOfNonempty
direction
β€”le_antisymm
SetLike.coe_subset_coe
instIsConcreteLE
directionOfNonempty.eq_1
direction.eq_1
vsub_set_subset_vectorSpan
Submodule.span_le
Set.Subset.rfl
direction_bot πŸ“–mathematicalβ€”direction
Bot.bot
AffineSubspace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instBot
β€”direction_eq_vectorSpan
bot_coe
vectorSpan_def
Set.vsub_empty
Submodule.span_empty
direction_eq_top_iff_of_nonempty πŸ“–mathematicalSet.Nonempty
SetLike.coe
AffineSubspace
instSetLike
direction
Top.top
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instTop
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”ext_of_direction_eq
direction_top
Set.inter_univ
direction_eq_vectorSpan πŸ“–mathematicalβ€”direction
vectorSpan
SetLike.coe
AffineSubspace
instSetLike
β€”β€”
direction_iInf πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
direction
iInf
AffineSubspace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Submodule.instInfSet
β€”LE.le.trans_eq
direction_sInf
iInf_range
direction_iInf_of_mem πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
direction
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instInfSet
β€”iInf.eq_1
direction_sInf_of_mem
Set.forall_mem_range
iInf_range
direction_iInf_of_mem_iInf πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
direction
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instInfSet
β€”iInf.eq_1
direction_sInf_of_mem_sInf
iInf_range
direction_inf πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
direction
AffineSubspace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Submodule.instMin
β€”le_inf
sInf_le_sInf
trans
Set.instIsTransSubset
Set.vsub_self_mono
Set.inter_subset_left
Set.inter_subset_right
direction_inf_of_mem πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
direction
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instMin
β€”Submodule.ext
Submodule.mem_inf
vadd_mem_iff_mem_direction
mem_inf_iff
direction_inf_of_mem_inf πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
direction
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instMin
β€”direction_inf_of_mem
mem_inf_iff
direction_le πŸ“–mathematicalAffineSubspace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
direction
β€”vectorSpan_mono
direction_mk' πŸ“–mathematicalβ€”direction
mk'
β€”Submodule.ext
mem_direction_iff_eq_vsub
mk'_nonempty
vsub_sub_vsub_cancel_right
Submodule.sub_mem
vadd_mem_mk'
self_mem_mk'
vadd_vsub
direction_sInf πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
direction
InfSet.sInf
AffineSubspace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
iInf
Submodule.instInfSet
Set
Set.instMembership
β€”iInf_congr_Prop
le_iInfβ‚‚
Submodule.span_mono
Set.vsub_self_mono
Set.biInter_subset_of_mem
direction_sInf_of_mem πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
direction
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
iInf
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instInfSet
Set
Set.instMembership
β€”LE.le.antisymm
direction_sInf
vadd_mem_iff_mem_direction
mem_sInf_iff
direction_sInf_of_mem_sInf πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
direction
iInf
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instInfSet
Set
Set.instMembership
β€”direction_sInf_of_mem
mem_sInf_iff
direction_top πŸ“–mathematicalβ€”direction
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instTop
β€”AddTorsor.nonempty
Submodule.ext
Submodule.mem_top
vsub_mem_direction
mem_top
vadd_vsub
eq_bot_or_nonempty πŸ“–mathematicalβ€”Bot.bot
AffineSubspace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set.Nonempty
SetLike.coe
instSetLike
β€”nonempty_iff_ne_bot
eq_or_ne
eq_iff_direction_eq_of_mem πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
directionβ€”ext_of_direction_eq
eq_of_direction_eq_of_nonempty_of_le πŸ“–β€”direction
Set.Nonempty
SetLike.coe
AffineSubspace
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”β€”ext_of_direction_eq
exists_of_lt πŸ“–mathematicalAffineSubspace
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
β€”Set.exists_of_ssubset
ext πŸ“–β€”AffineSubspace
SetLike.instMembership
instSetLike
β€”β€”SetLike.ext
ext_iff πŸ“–mathematicalβ€”SetLike.coe
AffineSubspace
instSetLike
β€”SetLike.ext'_iff
ext_of_direction_eq πŸ“–β€”direction
Set.Nonempty
Set
Set.instInter
SetLike.coe
AffineSubspace
instSetLike
β€”β€”ext
Set.mem_of_mem_inter_left
Set.Nonempty.some_mem
Set.mem_of_mem_inter_right
vsub_vadd
vadd_mem_of_mem_direction
vsub_mem_direction
inf_coe πŸ“–mathematicalβ€”Set
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
SetLike.coe
AffineSubspace
instSetLike
Set.instInter
β€”coe_inf
instIsSimpleOrderOfSubsingleton πŸ“–mathematicalβ€”IsSimpleOrder
AffineSubspace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
CompleteLattice.toBoundedOrder
instCompleteLattice
β€”instNontrivial
coe_eq_bot_iff
coe_eq_univ_iff
Set.eq_empty_or_nonempty
Set.Nonempty.eq_univ
instNonemptySubtypeMemMk' πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
instSetLike
mk'
β€”self_mem_mk'
instNonemptySubtypeMemTop πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Set.instNonemptyTop
AddTorsor.nonempty
instNontrivial πŸ“–mathematicalβ€”Nontrivial
AffineSubspace
β€”bot_ne_top
inter_eq_singleton_of_nonempty_of_isCompl πŸ“–mathematicalSet.Nonempty
SetLike.coe
AffineSubspace
instSetLike
IsCompl
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
direction
Set
Set.instInter
Set.instSingletonSet
β€”inter_nonempty_of_nonempty_of_sup_direction_eq_top
IsCompl.sup_eq_top
Set.ext
Set.mem_singleton_iff
vsub_mem_direction
vsub_eq_zero_iff_eq
Submodule.mem_bot
IsCompl.inf_eq_bot
inter_nonempty_of_nonempty_of_sup_direction_eq_top πŸ“–mathematicalSet.Nonempty
SetLike.coe
AffineSubspace
instSetLike
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
direction
Top.top
Submodule.instTop
Set
Set.instInter
β€”sup_direction_lt_of_nonempty_of_inter_empty
Set.not_nonempty_iff_eq_empty
not_top_lt
isEmpty_bot πŸ“–mathematicalβ€”IsEmpty
AffineSubspace
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”Subtype.isEmpty_of_false
notMem_bot
le_def πŸ“–mathematicalβ€”AffineSubspace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”β€”
le_def' πŸ“–mathematicalβ€”AffineSubspace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
β€”β€”
lt_def πŸ“–mathematicalβ€”AffineSubspace
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Set
Set.instHasSSubset
SetLike.coe
instSetLike
β€”β€”
lt_iff_le_and_exists πŸ“–mathematicalβ€”AffineSubspace
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Preorder.toLE
SetLike.instMembership
instSetLike
β€”lt_iff_le_not_ge
not_le_iff_exists
mem_coe πŸ“–mathematicalβ€”Set
Set.instMembership
SetLike.coe
AffineSubspace
instSetLike
SetLike.instMembership
β€”β€”
mem_direction_iff_eq_vsub πŸ“–mathematicalSet.Nonempty
SetLike.coe
AffineSubspace
instSetLike
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
direction
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”SetLike.mem_coe
coe_direction_eq_vsub_set
Set.mem_vsub
mem_direction_iff_eq_vsub_left πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
direction
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”SetLike.mem_coe
coe_direction_eq_vsub_set_left
mem_direction_iff_eq_vsub_right πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
direction
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”SetLike.mem_coe
coe_direction_eq_vsub_set_right
mem_iInf_iff πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
instSetLike
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”iInf.eq_1
mem_sInf_iff
Set.forall_mem_range
mem_inf_iff πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
instSetLike
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”β€”
mem_mk' πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
instSetLike
mk'
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”β€”
mem_sInf_iff πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
instSetLike
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”Set.mem_iInterβ‚‚
mem_top πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Set.mem_univ
mk'_eq πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
mk'
direction
β€”ext_of_direction_eq
direction_mk'
Set.mem_inter
self_mem_mk'
mk'_nonempty πŸ“–mathematicalβ€”Set.Nonempty
SetLike.coe
AffineSubspace
instSetLike
mk'
β€”self_mem_mk'
mk'_top πŸ“–mathematicalβ€”mk'
Top.top
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instTop
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”ext
nonempty_iff_ne_bot πŸ“–mathematicalβ€”Set.Nonempty
SetLike.coe
AffineSubspace
instSetLike
β€”Set.nonempty_iff_ne_empty
coe_eq_bot_iff
nonempty_of_affineSpan_eq_top πŸ“–mathematicalaffineSpan
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.Nonemptyβ€”Set.nonempty_iff_ne_empty
bot_ne_top
span_empty
nonempty_sup_left πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”Nonempty.map
SetLike.le_def
instIsConcreteLE
le_sup_left
nonempty_sup_right πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”Nonempty.map
SetLike.le_def
instIsConcreteLE
le_sup_right
notMem_bot πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”Set.notMem_empty
not_le_iff_exists πŸ“–mathematicalβ€”AffineSubspace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
β€”Set.not_subset
self_mem_mk' πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
instSetLike
mk'
β€”vsub_self
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
smul_vsub_vadd_mem πŸ“–mathematicalSet
Set.instMembership
carrier
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
β€”β€”
spanPoints_subset_coe_of_subset_coe πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
AffineSubspace
instSetLike
spanPointsβ€”Set.mem_of_mem_of_subset
vadd_mem_of_mem_direction
vectorSpan_mono
SetLike.mem_coe
SetLike.le_def
instIsConcreteLE
span_empty πŸ“–mathematicalβ€”affineSpan
Set
Set.instEmptyCollection
Bot.bot
AffineSubspace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”GaloisConnection.l_bot
GaloisInsertion.gc
span_iUnion πŸ“–mathematicalβ€”affineSpan
Set.iUnion
iSup
AffineSubspace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”GaloisConnection.l_iSup
GaloisInsertion.gc
span_union πŸ“–mathematicalβ€”affineSpan
Set
Set.instUnion
AffineSubspace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”GaloisConnection.l_sup
GaloisInsertion.gc
span_univ πŸ“–mathematicalβ€”affineSpan
Set.univ
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”eq_top_iff
subset_affineSpan
sup_direction_le πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
direction
AffineSubspace
instCompleteLattice
β€”sup_le
sInf_le_sInf
Set.Subset.trans
Set.vsub_self_mono
le_sup_left
le_sup_right
sup_direction_lt_of_nonempty_of_inter_empty πŸ“–mathematicalSet.Nonempty
SetLike.coe
AffineSubspace
instSetLike
Set
Set.instInter
Set.instEmptyCollection
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
direction
instCompleteLattice
β€”SetLike.lt_iff_le_and_exists
instIsConcreteLE
sup_direction_le
vsub_mem_direction
le_sup_right
le_sup_left
Submodule.mem_sup
Set.Nonempty.ne_empty
vadd_mem_of_mem_direction
vsub_eq_zero_iff_eq
vsub_vadd_eq_vsub_sub
sub_eq_add_neg
add_comm
neg_neg
vadd_vsub_assoc
add_assoc
neg_vsub_eq_vsub_rev
sub_eq_zero
Submodule.neg_mem
top_coe πŸ“–mathematicalβ€”SetLike.coe
AffineSubspace
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.univ
β€”β€”
vadd_mem_iff_mem_direction πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
direction
β€”vadd_vsub
vsub_mem_direction
vadd_mem_of_mem_direction
vadd_mem_iff_mem_of_mem_direction πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
direction
AffineSubspace
instSetLike
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
β€”neg_vadd_vadd
vadd_mem_of_mem_direction
Submodule.neg_mem
vadd_mem_mk' πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
AffineSubspace
instSetLike
mk'
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
β€”vadd_vsub
vadd_mem_of_mem_direction πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
direction
AffineSubspace
instSetLike
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
β€”mem_direction_iff_eq_vsub
one_smul
smul_vsub_vadd_mem
vectorSpan_eq_top_of_affineSpan_eq_top πŸ“–mathematicalaffineSpan
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
vectorSpan
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instTop
β€”direction_affineSpan
direction_top
vsub_mem_direction πŸ“–mathematicalAffineSubspace
SetLike.instMembership
instSetLike
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
direction
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”vsub_mem_vectorSpan

Set.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
affineSpan πŸ“–mathematicalSet.NonemptySetLike.coe
AffineSubspace
AffineSubspace.instSetLike
affineSpan
β€”affineSpan_nonempty

Submodule

Definitions

NameCategoryTheorems
toAffineSubspace πŸ“–CompOp
3 mathmath: mem_toAffineSubspace, affineSpan_le_toAffineSubspace_span, toAffineSubspace_direction

Theorems

NameKindAssumesProvesValidatesDepends On
mem_toAffineSubspace πŸ“–mathematicalβ€”AffineSubspace
addGroupIsAddTorsor
AddCommGroup.toAddGroup
SetLike.instMembership
AffineSubspace.instSetLike
toAffineSubspace
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
setLike
β€”β€”
toAffineSubspace_direction πŸ“–mathematicalβ€”AffineSubspace.direction
addGroupIsAddTorsor
AddCommGroup.toAddGroup
toAffineSubspace
β€”ext
AffineSubspace.vadd_mem_iff_mem_direction
zero_mem
add_zero

(root)

Definitions

NameCategoryTheorems
affineSpan πŸ“–CompOp
224 mathmath: Affine.Simplex.sSameSide_affineSpan_faceOpposite_point_left_iff, Affine.Simplex.isTangentAt_insphere_iff_eq_touchpoint, AffineSubspace.affineSpan_parallel_iff_vectorSpan_eq_and_eq_empty_iff_eq_empty, Affine.Simplex.faceOppositeCentroid_mem_affineSpan_face, exists_affineIndependent, Affine.Simplex.wOppSide_affineSpan_faceOpposite_point_left_iff, Affine.Simplex.orthogonalProjectionSpan_map, Affine.Simplex.ExcenterExists.excenter_notMem_affineSpan_face, affineSpan_le_toAffineSubspace_span, Affine.Simplex.sSameSide_excenter_singleton_point, AffineSubspace.affineSpan_pair_parallel_iff_exists_unit_smul', direction_affineSpan, Affine.Triangle.altitude_replace_orthocenter_eq_affineSpan, Affine.Simplex.ExcenterExists.excenter_notMem_affineSpan_faceOpposite, AffineBasis.tot, Affine.Simplex.circumcenter_mem_affineSpan, Affine.Simplex.affineSpan_pair_altitudeFoot_eq_altitude, Affine.Simplex.excenter_singleton_mem_affineSpan_range, IsOpen.exists_subset_affineIndependent_span_eq_top, AffineMap.eqOn_affineSpan, Affine.Triangle.sSameSide_affineSpan_pair_point_incenter, finiteDimensional_direction_affineSpan_of_finite, AffineMap.lineMap_rev_mem_affineSpan_pair, vadd_right_mem_affineSpan_pair, Affine.Simplex.wSameSide_affineSpan_faceOpposite_iff, Affine.Simplex.wOppSide_affineSpan_faceOpposite_point_right_iff, Affine.Simplex.median_eq_line_point_centroid, bot_lt_affineSpan, AffineEquiv.span_eq_top_iff, smul_vsub_rev_vadd_mem_affineSpan_pair, affineSpan_singleton_union_vadd_eq_top_of_span_eq_top, interior_convexHull_nonempty_iff_affineSpan_eq_top, Sbtw.left_mem_affineSpan, Affine.Simplex.orthogonalProjectionSpan_eq_point, Affine.Simplex.sSameSide_incenter_point, Affine.Simplex.affineSpan_face_le, Collinear.mem_affineSpan_of_mem_of_ne, Affine.Simplex.ExcenterExists.touchpoint_notMem_affineSpan_of_ne, EuclideanGeometry.Sphere.isTangentAt_of_dist_sq_eq_power, AffineIndependent.mem_affineSpan_iff, AffineSubspace.span_iUnion, EuclideanGeometry.affineSpan_of_orthocentricSystem, affineSpan_eq_affineSpan_lineMap_units, AffineBasis.tot', Affine.Simplex.altitudeFoot_mem_affineSpan_image_compl, AffineSubspace.direction_affineSpan_insert, Affine.Simplex.isTangentAt_insphere_touchpoint, affineCombination_mem_affineSpan_pair, Affine.Simplex.ExcenterExists.affineSpan_faceOpposite_eq_orthRadius, mem_intrinsicFrontier, AffineSubspace.affineSpan_eq_sInf, affineSpan_pair_le_of_mem_of_mem, Affine.Simplex.affineSpan_faceOpposite_eq_orthRadius_insphere, affineSpan_convexHull, mem_affineSpan_iff_eq_affineCombination, AffineBasis.affineSpan_eq_top_of_toMatrix_left_inv, Affine.Triangle.dist_circumcenter_reflection_orthocenter, affineCombination_mem_affineSpan, Affine.Simplex.ExcenterExists.isTangentAt_touchpoint, Affine.Simplex.wSameSide_affineSpan_faceOpposite_point_left_iff, Convex.interior_nonempty_iff_affineSpan_eq_top, AffineSubspace.span_union, Affine.Simplex.signedInfDist_apply_self, Affine.Simplex.centroid_notMem_affineSpan_of_ne_univ, Affine.Simplex.wOppSide_affineSpan_faceOpposite_iff, Affine.Simplex.ExcenterExists.sOppSide_excenter_point_iff, Affine.Simplex.incenter_notMem_affineSpan_face, Affine.Triangle.affineSpan_pair_eq_orthRadius, Collinear.finiteDimensional_direction_affineSpan, finiteDimensional_direction_affineSpan_insert_set, Affine.Simplex.orthogonalProjectionSpan_congr, Affine.Simplex.mongePlane_def, Affine.Simplex.wSameSide_affineSpan_faceOpposite_point_right_iff, Coplanar.finiteDimensional_direction_affineSpan, Affine.Simplex.altitudeFoot_mem_affineSpan, affineSpan_le, smul_vsub_vadd_mem_affineSpan_pair, right_mem_affineSpan_pair, mem_affineSpan_pair_iff_exists_lineMap_rev_eq, finiteDimensional_direction_affineSpan_insert, Affine.Triangle.sOppSide_affineSpan_pair_excenter_singleton_point, Affine.Simplex.points_mem_affineSpan_face, Affine.Simplex.points_mem_affineSpan_faceOpposite, finiteDimensional_direction_affineSpan_range, mem_affineSpan, Affine.Simplex.circumsphere_unique_dist_eq, Affine.Triangle.dist_orthocenter_reflection_circumcenter, affineSpan_subset_span, AffineIndependent.inf_affineSpan_eq_affineSpan_inter, Affine.Simplex.orthogonalProjection_circumcenter, Affine.Simplex.affineSpan_faceOpposite_le, centroid_mem_affineSpan_of_nonempty, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_exists_dist_eq, EuclideanGeometry.Sphere.sOppSide_faceOpposite_secondInter_of_mem_interior_faceOpposite, Affine.Simplex.touchpoint_mem_affineSpan, EuclideanGeometry.Sphere.sOppSide_faceOpposite_secondInter_of_mem_interior, coe_affineSpan, Affine.Triangle.affineSpan_orthocenter_point_le_altitude, EuclideanGeometry.orthogonalProjection_affineSpan_singleton, EuclideanGeometry.Sphere.IsTangentAt_of_angle_eq_pi_div_two, affineCombination_mem_affineSpan_image, AffineSubspace.affineSpan_eq_top_iff_vectorSpan_eq_top_of_nonempty, AffineSubspace.map_span, Affine.Simplex.sOppSide_excenter_singleton_point, Affine.Simplex.ExcenterExists.sOppSide_point_excenter_iff, Affine.Simplex.mem_affineSpan_image_iff, centroid_mem_affineSpan_of_cast_card_ne_zero, intrinsicClosure_eq_closure_inter_affineSpan, mem_affineSpan_pair_iff_exists_lineMap_eq, Affine.Simplex.sSameSide_affineSpan_faceOpposite_iff, Affine.Simplex.sSameSide_affineSpan_faceOpposite_of_sign_eq, Affine.Simplex.orthogonalProjectionSpan_faceOpposite_eq_point_rev, EuclideanGeometry.exists_dist_eq_circumradius_of_subset_insert_orthocenter, Affine.Simplex.ExcenterExists.isTangentAt_exsphere_iff_eq_touchpoint, Affine.Simplex.ExcenterExists.excenter_notMem_affineSpan_pair, AffineSubspace.mem_affineSpan_insert_iff, Affine.Triangle.affineSpan_pair_eq_orthRadius_insphere, mem_affineSpan_iff_eq_weightedVSubOfPoint_vadd, mem_affineSpan_iff_exists, subset_affineSpan, left_mem_affineSpan_pair, Affine.Simplex.span_eq_top, exists_subset_affineIndependent_affineSpan_eq_top, affineSpan_le_of_subset_coe, Affine.Simplex.sOppSide_point_excenter_singleton, Affine.Simplex.ninePointCircle_center_mem_affineSpan, AffineSubspace.comap_span, Affine.Simplex.affineCombination_mem_affineSpan_faceOpposite_iff, Affine.Simplex.ExcenterExists.excenter_mem_affineSpan_range, Affine.Simplex.sOppSide_affineSpan_faceOpposite_of_pos_of_neg, AffineIndependent.affineSpan_eq_top_iff_card_eq_finrank_add_one, IsOpen.exists_between_affineIndependent_span_eq_top, Affine.Simplex.affineSpan_range_medial, Affine.Simplex.points_notMem_affineSpan_faceOpposite, Affine.Triangle.dist_circumcenter_reflection_orthocenter_finset, EuclideanGeometry.Sphere.secondInter_vsub_mem_affineSpan, affineSpan_coe_preimage_eq_top, AffineSubspace.direction_affineSpan_pair_le_iff_exists_smul, AffineSubspace.span_empty, affineSpan_eq_top_of_nonempty_interior, Affine.Simplex.incenter_mem_affineSpan_range, affineSpan_intrinsicClosure, vectorSpan_add_self, finiteDimensional_direction_affineSpan_image_of_finite, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_dist_eq, Affine.Simplex.incenter_notMem_affineSpan_pair, AffineSubspace.preimage_coe_affineSpan_singleton, affineSegment_subset_affineSpan, affineCombination_mem_affineSpan_of_nonempty, AffineSubspace.span_univ, Affine.Triangle.sOppSide_affineSpan_pair_point_excenter_singleton, AffineSubspace.signedInfDist_singleton, affineSpan_nonempty, Affine.Simplex.sSameSide_affineSpan_faceOpposite_point_right_iff, Affine.Triangle.orthocenter_mem_affineSpan, Affine.Simplex.mongePoint_mem_affineSpan, AffineBasis.isUnit_toMatrix_iff, IsClosed.convexHull_subset_affineSpan_isVisible, AffineSubspace.affineSpan_pair_parallel_iff_exists_unit_smul, affineSpan_eq_bot, Affine.Simplex.orthogonalProjectionSpan_reindex, Affine.Simplex.touchpoint_empty_notMem_affineSpan_of_ne, EuclideanGeometry.Sphere.IsTangentAt_iff_angle_eq_pi_div_two, Affine.Simplex.sSameSide_point_excenter_singleton, Affine.Triangle.sSameSide_affineSpan_pair_point_excenter_singleton, Affine.Simplex.orthogonalProjectionSpan_eulerPoint_mem_ninePointCircle, affineSpan_mono, centroid_mem_affineSpan_of_card_eq_add_one, EuclideanGeometry.Sphere.isTangentAt_iff_dist_sq_eq_power, AffineSubspace.mem_affineSpan_singleton, Affine.Simplex.signedInfDist_affineCombination, AffineIndependent.injective_affineSpan_image, Affine.Simplex.sOppSide_affineSpan_faceOpposite_point_right_iff, Set.Nonempty.affineSpan, AffineSubspace.affineSpan_eq_top_iff_vectorSpan_eq_top_of_nontrivial, Affine.Simplex.setInterior_subset_affineSpan, Affine.Simplex.touchpoint_mem_affineSpan_simplex, Sbtw.right_mem_affineSpan, AffineIndependent.affineSpan_disjoint_of_disjoint, EuclideanGeometry.existsUnique_dist_eq_of_insert, AffineIndependent.existsUnique_dist_eq, AffineSubspace.pointwise_vadd_span, IsOpen.affineSpan_eq_top, Affine.Triangle.sSameSide_affineSpan_pair_excenter_singleton_point, Wbtw.mem_affineSpan, mem_intrinsicInterior, centroid_mem_affineSpan_of_card_ne_zero, instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem, Affine.Simplex.reflection_circumcenter_eq_affineCombination_of_pointsWithCircumcenter, Wbtw.left_mem_affineSpan_of_right_ne, Affine.Simplex.map_subtype_restrict, Wbtw.right_mem_affineSpan_of_left_ne, Affine.Simplex.restrict_map_subtype, AffineIndependent.notMem_affineSpan_diff, Affine.Simplex.altitudeFoot_mem_affineSpan_faceOpposite, AffineMap.lineMap_mem_affineSpan_pair, Affine.Triangle.dist_orthocenter_reflection_circumcenter_finset, Affine.Simplex.affineSpan_pair_eq_altitude_iff, Affine.Simplex.closedInterior_subset_affineSpan, finiteDimensional_direction_affineSpan_singleton, EuclideanGeometry.dist_orthogonalProjection_line_eq_iff_two_zsmul_oangle_eq, Collinear.affineSpan_eq_of_ne, EuclideanGeometry.dist_orthogonalProjection_line_eq_of_two_zsmul_oangle_eq, affineSpan_insert_affineSpan, Affine.Simplex.sOppSide_affineSpan_faceOpposite_iff, Affine.Triangle.sSameSide_affineSpan_pair_incenter_point, affineSpan_insert_zero, AffineSubspace.affineSpan_pair_parallel_iff_vectorSpan_eq, Affine.Simplex.incenter_notMem_affineSpan_faceOpposite, convexHull_subset_affineSpan, AffineSubspace.affineSpan_coe, Affine.Simplex.centroid_mem_affineSpan, AffineSubspace.affineSpan_pair_comm, Affine.Simplex.ExcenterExists.sSameSide_excenter_point_iff, AffineSubspace.coe_affineSpan_singleton, Affine.Simplex.altitude_def, vadd_left_mem_affineSpan_pair, intrinsicClosure_subset_affineSpan, mem_intrinsicClosure, affineSpan_eq_top_iff_nonempty_of_subsingleton, Affine.Simplex.sSameSide_point_incenter, Affine.Simplex.ExcenterExists.sSameSide_point_excenter_iff, Affine.Simplex.sOppSide_affineSpan_faceOpposite_point_left_iff, AffineSubspace.smul_span
spanPoints πŸ“–CompOp
5 mathmath: AffineSubspace.spanPoints_subset_coe_of_subset_coe, mem_spanPoints, spanPoints_nonempty, coe_affineSpan, subset_spanPoints
vectorSpan πŸ“–CompOp
81 mathmath: AffineSubspace.affineSpan_parallel_iff_vectorSpan_eq_and_eq_empty_iff_eq_empty, vectorSpan_range_eq_span_range_vsub_left_ne, vsub_mem_vectorSpan_of_mem_spanPoints_of_mem_spanPoints, direction_affineSpan, vsub_mem_vectorSpan, finiteDimensional_vectorSpan_range, finrank_vectorSpan_image_finset_le, vsub_mem_vectorSpan_pair, vectorSpan_eq_bot_iff_subsingleton, vectorSpan_eq_span_vsub_set_right_ne, finrank_vectorSpan_le_iff_not_affineIndependent, mem_vectorSpan_iff_eq_weightedVSub, AffineIndependent.finrank_vectorSpan_add_one, vectorSpan_range_eq_span_range_vsub_right, AffineIndependent.card_le_finrank_succ, Coplanar.finrank_le_two, AffineSubspace.vectorSpan_union_of_mem_of_mem, finiteDimensional_vectorSpan_image_of_finite, finrank_vectorSpan_insert_le, vsub_rev_mem_vectorSpan_pair, vectorSpan_empty, collinear_iff_finrank_le_one, vectorSpan_image_eq_span_vsub_set_left_ne, finiteDimensional_vectorSpan_of_finite, AffineIndependent.vectorSpan_image_eq_iff, vectorSpan_eq_span_vsub_finset_right_ne, Affine.Simplex.vectorSpan_isOrtho_altitude_direction, affineIndependent_iff_not_finrank_vectorSpan_le, vectorSpan_pair_rev, AffineIndependent.vectorSpan_eq_top_of_card_eq_finrank_add_one, vectorSpan_eq_span_vsub_set_left_ne, finiteDimensional_vectorSpan_insert_set, finiteDimensional_vectorSpan_singleton, vectorSpan_insert_eq_vectorSpan, AffineMap.map_vectorSpan, AffineIndependent.finrank_vectorSpan_image_finset, vectorSpan_pair, vectorSpan_mono, Affine.Simplex.direction_mongePlane, affineIndependent_iff_le_finrank_vectorSpan, vectorSpan_eq_span_vsub_set_left, AffineSubspace.affineSpan_eq_top_iff_vectorSpan_eq_top_of_nonempty, vectorSpan_segment, Collinear.finiteDimensional_vectorSpan, mem_vectorSpan_pair_rev, mem_affineSpan_iff_exists, Real.Convex.dimH_eq_finrank_vectorSpan, collinear_iff_rank_le_one, Coplanar.finiteDimensional_vectorSpan, vectorSpan_range_eq_span_range_vsub_right_ne, vectorSpan_vadd, AffineSubspace.direction_eq_vectorSpan, weightedVSub_mem_vectorSpan, AffineIndependent.finrank_vectorSpan, vectorSpan_singleton, vectorSpan_def, smul_vsub_rev_mem_vectorSpan_pair, vectorSpan_add_self, mem_vectorSpan_pair, vectorSpan_image_eq_span_vsub_set_right_ne, Collinear.finrank_le_one, affineIndependent_iff_finrank_vectorSpan_eq, vectorSpan_eq_span_vsub_set_right, AffineSubspace.affineSpan_eq_top_iff_vectorSpan_eq_top_of_nontrivial, AffineSubspace.Parallel.vectorSpan_eq, smul_vsub_mem_vectorSpan_pair, finrank_vectorSpan_range_add_one_le, vsub_mem_vectorSpan_of_mem_affineSpan_of_mem_affineSpan, coplanar_iff_finrank_le_two, vsub_set_subset_vectorSpan, weightedVSub_mem_vectorSpan_pair, vectorSpan_range_eq_span_range_vsub_left, Affine.Simplex.direction_altitude, AffineMap.linear_eqOn_vectorSpan, AffineSubspace.affineSpan_pair_parallel_iff_vectorSpan_eq, AffineMap.vectorSpan_image_eq_submodule_map, AffineSubspace.vectorSpan_eq_top_of_affineSpan_eq_top, finrank_vectorSpan_insert_le_set, finiteDimensional_vectorSpan_insert, finrank_vectorSpan_range_le, vectorSpan_of_subsingleton
Β«termLine[_,_,_]Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
affineSpan_eq_bot πŸ“–mathematicalβ€”affineSpan
Bot.bot
AffineSubspace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
AffineSubspace.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set
Set.instEmptyCollection
β€”not_iff_not
AffineSubspace.nonempty_iff_ne_bot
affineSpan_nonempty
Set.nonempty_iff_ne_empty
affineSpan_eq_top_iff_nonempty_of_subsingleton πŸ“–mathematicalβ€”affineSpan
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
AffineSubspace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.Nonempty
β€”bot_lt_affineSpan
IsSimpleOrder.bot_lt_iff_eq_top
AffineSubspace.instIsSimpleOrderOfSubsingleton
affineSpan_induction πŸ“–β€”AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
β€”β€”affineSpan_le
affineSpan_induction' πŸ“–β€”subset_affineSpan
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
VSub.vsub
AddTorsor.toVSub
AffineSubspace.smul_vsub_vadd_mem
affineSpan
AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
β€”β€”subset_affineSpan
AffineSubspace.smul_vsub_vadd_mem
affineSpan_induction
affineSpan_insert_affineSpan πŸ“–mathematicalβ€”affineSpan
Set
Set.instInsert
SetLike.coe
AffineSubspace
AffineSubspace.instSetLike
β€”Set.insert_eq
AffineSubspace.span_union
AffineSubspace.affineSpan_coe
affineSpan_insert_eq_affineSpan πŸ“–mathematicalAffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
β€”affineSpan_insert_affineSpan
Set.insert_eq_of_mem
AffineSubspace.mem_coe
AffineSubspace.affineSpan_coe
affineSpan_insert_zero πŸ“–mathematicalβ€”SetLike.coe
AffineSubspace
addGroupIsAddTorsor
AddCommGroup.toAddGroup
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
Submodule.span
β€”Submodule.span_insert_zero
HasSubset.Subset.antisymm
Set.instAntisymmSubset
affineSpan_subset_span
vectorSpan_add_self
vectorSpan_def
Set.Subset.trans
instIsConcreteLE
Submodule.span_mono
Set.subset_sub_left
Set.mem_insert
Set.subset_add_left
affineSpan_le πŸ“–mathematicalβ€”AffineSubspace
Preorder.toLE
PartialOrder.toPreorder
AffineSubspace.instPartialOrder
affineSpan
Set
Set.instHasSubset
SetLike.coe
AffineSubspace.instSetLike
β€”GaloisInsertion.gc
affineSpan_le_of_subset_coe πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
AffineSubspace
AffineSubspace.instSetLike
Preorder.toLE
PartialOrder.toPreorder
AffineSubspace.instPartialOrder
affineSpan
β€”AffineSubspace.spanPoints_subset_coe_of_subset_coe
affineSpan_le_toAffineSubspace_span πŸ“–mathematicalβ€”AffineSubspace
addGroupIsAddTorsor
AddCommGroup.toAddGroup
Preorder.toLE
PartialOrder.toPreorder
AffineSubspace.instPartialOrder
affineSpan
Submodule.toAffineSubspace
Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”affineSpan_induction'
Submodule.subset_span
Submodule.add_mem
Submodule.smul_mem
Submodule.sub_mem
affineSpan_mono πŸ“–mathematicalSet
Set.instHasSubset
AffineSubspace
Preorder.toLE
PartialOrder.toPreorder
AffineSubspace.instPartialOrder
affineSpan
β€”affineSpan_le_of_subset_coe
Set.Subset.trans
subset_affineSpan
affineSpan_nonempty πŸ“–mathematicalβ€”Set.Nonempty
SetLike.coe
AffineSubspace
AffineSubspace.instSetLike
affineSpan
β€”spanPoints_nonempty
affineSpan_pair_le_of_left_mem πŸ“–mathematicalAffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
Preorder.toLE
PartialOrder.toPreorder
AffineSubspace.instPartialOrder
β€”affineSpan_pair_le_of_mem_of_mem
right_mem_affineSpan_pair
affineSpan_pair_le_of_mem_of_mem πŸ“–mathematicalAffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
Preorder.toLE
PartialOrder.toPreorder
AffineSubspace.instPartialOrder
affineSpan
Set
Set.instInsert
Set.instSingletonSet
β€”affineSpan_le
Set.insert_subset_iff
Set.singleton_subset_iff
affineSpan_pair_le_of_right_mem πŸ“–mathematicalAffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
Preorder.toLE
PartialOrder.toPreorder
AffineSubspace.instPartialOrder
β€”affineSpan_pair_le_of_mem_of_mem
left_mem_affineSpan_pair
affineSpan_subset_span πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
AffineSubspace
addGroupIsAddTorsor
AddCommGroup.toAddGroup
AffineSubspace.instSetLike
affineSpan
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
Submodule.span
β€”affineSpan_le_toAffineSubspace_span
bot_lt_affineSpan πŸ“–mathematicalβ€”AffineSubspace
Preorder.toLT
PartialOrder.toPreorder
AffineSubspace.instPartialOrder
Bot.bot
OrderBot.toBot
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
AffineSubspace.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
affineSpan
Set.Nonempty
β€”bot_lt_iff_ne_bot
Set.nonempty_iff_ne_empty
Iff.not
affineSpan_eq_bot
coe_affineSpan πŸ“–mathematicalβ€”SetLike.coe
AffineSubspace
AffineSubspace.instSetLike
affineSpan
spanPoints
β€”β€”
direction_affineSpan πŸ“–mathematicalβ€”AffineSubspace.direction
affineSpan
vectorSpan
β€”le_antisymm
Submodule.span_le
vsub_vadd_eq_vsub_sub
vadd_vsub_assoc
Submodule.sub_mem
Submodule.add_mem
vsub_mem_vectorSpan
vectorSpan_mono
subset_spanPoints
instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
β€”Set.Nonempty.to_subtype
Set.Nonempty.affineSpan
Set.nonempty_coe_sort
left_mem_affineSpan_pair πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
β€”mem_affineSpan
Set.mem_insert
mem_affineSpan πŸ“–mathematicalSet
Set.instMembership
AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
β€”mem_spanPoints
mem_affineSpan_iff_exists πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instMembership
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
vectorSpan
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
β€”β€”
mem_spanPoints πŸ“–mathematicalSet
Set.instMembership
spanPointsβ€”Submodule.zero_mem
zero_vadd
right_mem_affineSpan_pair πŸ“–mathematicalβ€”AffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
β€”mem_affineSpan
Set.mem_insert_of_mem
Set.mem_singleton
smul_vsub_mem_vectorSpan_pair πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set
Set.instInsert
Set.instSingletonSet
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
VSub.vsub
AddTorsor.toVSub
β€”Submodule.smul_mem
vsub_mem_vectorSpan_pair
smul_vsub_rev_mem_vectorSpan_pair πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set
Set.instInsert
Set.instSingletonSet
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
VSub.vsub
AddTorsor.toVSub
β€”Submodule.smul_mem
vsub_rev_mem_vectorSpan_pair
spanPoints_nonempty πŸ“–mathematicalβ€”Set.Nonempty
spanPoints
β€”Mathlib.Tactic.Contrapose.contrapose₁
Set.not_nonempty_iff_eq_empty
vectorSpan_empty
zero_vadd
AddTorsor.nonempty
Set.Nonempty.mono
subset_spanPoints
subset_affineSpan πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
AffineSubspace
AffineSubspace.instSetLike
affineSpan
β€”subset_spanPoints
subset_spanPoints πŸ“–mathematicalβ€”Set
Set.instHasSubset
spanPoints
β€”mem_spanPoints
vadd_mem_affineSpan_of_mem_affineSpan_of_mem_vectorSpan πŸ“–mathematicalAffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
vectorSpan
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
β€”vadd_mem_spanPoints_of_mem_spanPoints_of_mem_vectorSpan
vadd_mem_spanPoints_of_mem_spanPoints_of_mem_vectorSpan πŸ“–mathematicalSet
Set.instMembership
spanPoints
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
β€”vadd_vadd
Submodule.add_mem
vectorSpan_add_self πŸ“–mathematicalβ€”Set
Set.add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SetLike.coe
Submodule
Ring.toSemiring
Submodule.setLike
vectorSpan
addGroupIsAddTorsor
AddCommGroup.toAddGroup
AffineSubspace
AffineSubspace.instSetLike
affineSpan
β€”Set.ext
vectorSpan_def πŸ“–mathematicalβ€”vectorSpan
Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
VSub.vsub
Set
Set.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”β€”
vectorSpan_empty πŸ“–mathematicalβ€”vectorSpan
Set
Set.instEmptyCollection
Bot.bot
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instBot
β€”vectorSpan_def
Set.vsub_empty
Submodule.span_empty
vectorSpan_eq_bot_iff_subsingleton πŸ“–mathematicalβ€”vectorSpan
Bot.bot
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instBot
Set.Subsingleton
β€”Set.not_subsingleton_iff
vsub_mem_vectorSpan
vectorSpan_of_subsingleton
vectorSpan_insert_eq_vectorSpan πŸ“–mathematicalAffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
vectorSpan
Set
Set.instInsert
β€”affineSpan_insert_eq_affineSpan
vectorSpan_mono πŸ“–mathematicalSet
Set.instHasSubset
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
vectorSpan
β€”Submodule.span_mono
Set.vsub_self_mono
vectorSpan_of_subsingleton πŸ“–mathematicalSet.SubsingletonvectorSpan
Bot.bot
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instBot
β€”Set.Subsingleton.eq_empty_or_singleton
vectorSpan_empty
vectorSpan_singleton
vectorSpan_singleton πŸ“–mathematicalβ€”vectorSpan
Set
Set.instSingletonSet
Bot.bot
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instBot
β€”Set.singleton_vsub_singleton
vsub_self
Submodule.span_zero_singleton
vsub_mem_vectorSpan πŸ“–mathematicalSet
Set.instMembership
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”vsub_set_subset_vectorSpan
Set.vsub_mem_vsub
vsub_mem_vectorSpan_of_mem_affineSpan_of_mem_affineSpan πŸ“–mathematicalAffineSubspace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
vectorSpan
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”vsub_mem_vectorSpan_of_mem_spanPoints_of_mem_spanPoints
vsub_mem_vectorSpan_of_mem_spanPoints_of_mem_spanPoints πŸ“–mathematicalSet
Set.instMembership
spanPoints
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”vsub_vadd_eq_vsub_sub
vadd_vsub_assoc
add_comm
add_sub_assoc
Submodule.sub_mem
Submodule.add_mem
vsub_mem_vectorSpan
vsub_mem_vectorSpan_pair πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set
Set.instInsert
Set.instSingletonSet
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”vsub_mem_vectorSpan
Set.mem_insert
Set.mem_insert_of_mem
Set.mem_singleton
vsub_rev_mem_vectorSpan_pair πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set
Set.instInsert
Set.instSingletonSet
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
β€”vsub_mem_vectorSpan
Set.mem_insert_of_mem
Set.mem_singleton
Set.mem_insert
vsub_set_subset_vectorSpan πŸ“–mathematicalβ€”Set
Set.instHasSubset
VSub.vsub
Set.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
SetLike.coe
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
vectorSpan
β€”Submodule.subset_span

---

← Back to Index