| Name | Category | Theorems |
carrier π | CompOp | β |
direction π | CompOp | 226 mathmath: Affine.Simplex.altitudeFoot_restrict, direction_inf, coe_vsub, direction_sup_eq_sup_direction, Affine.Simplex.orthogonalProjectionSpan_map, EuclideanGeometry.vsub_orthogonalProjection_mem_direction_orthogonal, AffineMap.restrict.bijective, Affine.Simplex.finiteDimensional_direction_altitude, direction_affineSpan, Affine.Simplex.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, direction_inf_of_mem, Affine.Simplex.restrict_reindex, Affine.Simplex.faceOppositeCentroid_restrict, EuclideanGeometry.orthogonalProjection_congr, direction_le, AffineIsometryEquiv.ofTop_apply, finiteDimensional_direction_affineSpan_of_finite, Affine.Simplex.restrict_map_restrict, EuclideanGeometry.orthogonalProjection_contLinear, EuclideanGeometry.dist_orthogonalProjection_eq_iff_oangle_eq, coe_subtypeA, subtype_apply, direction_eq_top_iff_of_nonempty, EuclideanGeometry.reflection_vadd_smul_vsub_orthogonalProjection, EuclideanGeometry.inter_eq_singleton_orthogonalProjection, linear_topEquiv, Affine.Simplex.orthogonalProjectionSpan_eq_point, EuclideanGeometry.orthogonalProjection_map, vsub_mem_direction, Affine.Simplex.circumradius_restrict, Affine.Simplex.medial_restrict, EuclideanGeometry.angle_orthogonalProjection_self, EuclideanGeometry.orthogonalProjection_apply_mem, coe_subtypeβα΅’, EuclideanGeometry.dist_orthogonalProjection_eq_iff_angle_eq, direction_affineSpan_insert, Affine.Simplex.finrank_direction_altitude, Submodule.toAffineSubspace_direction, Affine.Simplex.ninePointCircle_restrict, Affine.Simplex.face_restrict, finrank_vectorSpan_insert_le, Affine.Simplex.interior_restrict, inclusion_linear, EuclideanGeometry.orthogonalProjection_apply', Affine.Simplex.dist_sq_eq_dist_orthogonalProjection_sq_add_dist_orthogonalProjection_sq, EuclideanGeometry.Sphere.coe_secondInter, finiteDimensional_direction_map, EuclideanGeometry.orthogonalProjection_orthogonalProjection_of_le, EuclideanGeometry.Sphere.isTangent_iff_isTangentAt_orthogonalProjection, Affine.Triangle.dist_circumcenter_reflection_orthocenter, AffineIsometryEquiv.coe_ofEq_apply, Affine.Simplex.altitude_restrict_eq_comap_subtype, isometryEquivMap.toAffineMap_eq, signedInfDist_eq_signedDist_of_mem, Affine.Simplex.signedInfDist_apply_self, signedInfDist_eq_signedDist_orthogonalProjection, AffineEquiv.linear_ofEq, coe_direction_eq_vsub_set, AffineIsometryEquiv.ofTop_symm_apply_coe, Collinear.finiteDimensional_direction_affineSpan, finiteDimensional_direction_affineSpan_insert_set, Affine.Simplex.orthogonalProjectionSpan_congr, mem_direction_iff_eq_vsub, AffineIsometryEquiv.ofEq_symm, Affine.Simplex.vectorSpan_isOrtho_altitude_direction, parallel_iff_direction_eq_and_eq_bot_iff_eq_bot, asymptoticCone_affineSubspace, Coplanar.finiteDimensional_direction_affineSpan, Affine.Simplex.ExcenterExists.touchpointWeights_restrict, instIsTopologicalAddTorsorSubtypeMemSubmoduleDirection, EuclideanGeometry.orthogonalProjection_subtype, EuclideanGeometry.two_zsmul_oangle_self_orthogonalProjection, finiteDimensional_direction_affineSpan_insert, Affine.Simplex.ExcenterExists.excenter_restrict, toContinuousAffineMap_subtypeβα΅’, finiteDimensional_direction_affineSpan_range, Parallel.direction_eq, Affine.Triangle.dist_orthocenter_reflection_circumcenter, EuclideanGeometry.oangle_orthogonalProjection_self, Affine.Simplex.map_altitude_restrict, Affine.Simplex.faceOpposite_restrict, EuclideanGeometry.dist_orthogonalProjection_eq_dist_iff_eq_of_mem, abs_signedInfDist_eq_dist_of_mem_affineSpan_insert, Affine.Simplex.exradius_restrict, EuclideanGeometry.reflection_apply_of_mem, direction_sup, Affine.Simplex.orthogonalProjection_circumcenter, direction_iInf_of_mem, subtypeA_toAffineMap, Affine.Simplex.exists_forall_dist_eq_iff_exists_excenterExists_and_eq_excenter, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_exists_dist_eq, Affine.Simplex.direction_mongePlane, coe_vadd, Affine.Simplex.circumcenter_restrict, AffineMap.restrict.injective, Affine.Simplex.height_restrict, EuclideanGeometry.orthogonalProjection_affineSpan_singleton, subtype_injective, subtype_linear, pointwise_vadd_direction, EuclideanGeometry.dist_sq_eq_dist_orthogonalProjection_sq_add_dist_orthogonalProjection_sq, topEquiv_symm_apply_coe, isometryEquivMap.coe_apply, EuclideanGeometry.Sphere.direction_orthRadius_le_iff, EuclideanGeometry.eq_or_eq_reflection_of_dist_eq, Affine.Simplex.incenter_restrict, EuclideanGeometry.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, eq_iff_direction_eq_of_mem, Affine.Simplex.orthogonalProjectionSpan_faceOpposite_eq_point_rev, EuclideanGeometry.dist_orthogonalProjection_eq_infNndist, direction_iInf, AffineMap.restrict.surjective, Affine.Simplex.inradius_restrict, subtypeβα΅’_linear, map_direction, AffineMap.restrict.coe_apply, EuclideanGeometry.Sphere.dist_orthogonalProjection_eq_radius_iff_isTangent, direction_top, EuclideanGeometry.orthogonalProjection_eq_orthogonalProjection_iff_vsub_mem, EuclideanGeometry.dist_eq_iff_dist_orthogonalProjection_eq, Affine.Simplex.centroid_restrict, EuclideanGeometry.dist_orthogonalProjection_eq_infDist, direction_lt_of_nonempty, EuclideanGeometry.orthogonalProjection_mem, Affine.Simplex.orthogonalProjectionSpan_restrict, direction_eq_vectorSpan, Affine.Simplex.setInterior_restrict, finiteDimensional_sup, Affine.Simplex.excenterWeights_restrict, EuclideanGeometry.dist_orthogonalProjection_eq_zero_iff, AffineEquiv.ofEq_symm, AffineMap.restrict.linear_aux, EuclideanGeometry.exists_dist_eq_iff_exists_dist_orthogonalProjection_eq, linear_equivMapOfInjective, EuclideanGeometry.Sphere.IsTangentAt.eq_orthogonalProjection, Affine.Simplex.median_restrict, Affine.Triangle.dist_circumcenter_reflection_orthocenter_finset, affineSpan_coe_preimage_eq_top, direction_affineSpan_pair_le_iff_exists_smul, coe_direction_eq_vsub_set_left, EuclideanGeometry.reflection_eq_iff_orthogonalProjection_eq, Affine.Simplex.closedInterior_restrict, direction_sInf, EuclideanGeometry.orthogonalProjection_orthogonalProjection, EuclideanGeometry.orthogonalProjection_vsub_mem_direction, finiteDimensional_direction_affineSpan_image_of_finite, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_dist_eq, topEquiv_apply, Affine.Simplex.mongePoint_restrict, direction_iInf_of_mem_iInf, direction_sInf_of_mem, Affine.Simplex.eulerPoint_restrict, EuclideanGeometry.vsub_orthogonalProjection_mem_direction, coe_inclusion_apply, Affine.Simplex.ExcenterExists.touchpoint_restrict, signedInfDist_singleton, Affine.Simplex.coe_orthogonalProjection_vadd_smul_vsub_orthogonalProjection, vadd_mem_iff_mem_direction, Affine.Simplex.excenterWeightsUnnorm_restrict, subtypeβα΅’_linearIsometry, direction_bot, EuclideanGeometry.Sphere.IsTangent.isTangentAt, sup_direction_le, EuclideanGeometry.reflection_apply', AffineIsometryEquiv.ofEq_rfl, EuclideanGeometry.oangle_self_orthogonalProjection, AffineEquiv.coe_ofEq_apply, direction_inf_of_mem_inf, mem_direction_iff_eq_vsub_right, AffineMap.restrict.linear, Affine.Simplex.abs_signedInfDist_eq_dist_of_mem_affineSpan_range, direction_smul, coe_subtype, Affine.Simplex.orthogonalProjectionSpan_reindex, directionOfNonempty_eq_direction, EuclideanGeometry.orthogonalProjection_linear, signedInfDist_def, Affine.Simplex.orthogonalProjectionSpan_eulerPoint_mem_ninePointCircle, Affine.Simplex.signedInfDist_affineCombination, EuclideanGeometry.angle_self_orthogonalProjection, direction_perpBisector, angle_coe, EuclideanGeometry.orthogonalProjection_eq_self_iff, EuclideanGeometry.reflection_subtype, isometryEquivMap.apply_symm_apply, inclusion_rfl, direction_mk', EuclideanGeometry.orthogonalProjection_vsub_mem_direction_orthogonal, vsub_right_mem_direction_iff_mem, EuclideanGeometry.eq_orthogonalProjection_of_eq_subspace, EuclideanGeometry.orthogonalProjection_apply, EuclideanGeometry.Sphere.direction_orthRadius, signedInfDist_apply_self, EuclideanGeometry.orthogonalProjection_vsub_orthogonalProjection, EuclideanGeometry.orthogonalProjection_mem_orthogonal, mem_direction_iff_eq_vsub_left, EuclideanGeometry.two_zsmul_oangle_orthogonalProjection_self, equivMapOfInjective_toFun, direction_sInf_of_mem_sInf, Affine.Simplex.reflection_circumcenter_eq_affineCombination_of_pointsWithCircumcenter, EuclideanGeometry.coe_orthogonalProjection_eq_iff_mem, Affine.Simplex.map_subtype_restrict, Affine.Simplex.restrict_map_subtype, subtypeβα΅’_toAffineMap, Affine.Triangle.dist_orthocenter_reflection_circumcenter_finset, Affine.Simplex.affineSpan_pair_eq_altitude_iff, Affine.Simplex.direction_altitude, Affine.Simplex.restrict_map_inclusion, finiteDimensional_direction_affineSpan_singleton, EuclideanGeometry.dist_orthogonalProjection_line_eq_iff_two_zsmul_oangle_eq, EuclideanGeometry.orthogonalProjection_eq_iff_mem, EuclideanGeometry.dist_orthogonalProjection_line_eq_of_two_zsmul_oangle_eq, sup_direction_lt_of_nonempty_of_inter_empty, vsub_left_mem_direction_iff_mem, mk'_eq, EuclideanGeometry.Sphere.dist_orthogonalProjection_eq_radius_iff_isTangentAt, EuclideanGeometry.reflection_apply, AffineEquiv.ofEq_rfl, EuclideanGeometry.dist_set_eq_iff_dist_orthogonalProjection_eq, EuclideanGeometry.Sphere.finrank_orthRadius, isClosed_direction_iff, coe_direction_eq_vsub_set_right, Affine.Simplex.altitude_def, Affine.Simplex.restrict_points_coe, Affine.Simplex.excenterExists_restrict, EuclideanGeometry.orthogonalProjection_mem_subspace_eq_self
|
directionOfNonempty π | CompOp | 1 mathmath: directionOfNonempty_eq_direction
|
gi π | CompOp | β |
instCompleteLattice π | CompOp | 90 mathmath: direction_inf, direction_sup_eq_sup_direction, direction_inf_of_mem, AffineBasis.tot, IsOpen.exists_subset_affineIndependent_span_eq_top, mem_sInf_iff, comap_bot, bot_lt_affineSpan, AffineEquiv.span_eq_top_iff, direction_eq_top_iff_of_nonempty, affineSpan_singleton_union_vadd_eq_top_of_span_eq_top, interior_convexHull_nonempty_iff_affineSpan_eq_top, linear_topEquiv, not_wSameSide_bot, span_iUnion, AffineBasis.tot', coe_eq_univ_iff, affineSpan_eq_sInf, EuclideanGeometry.Sphere.orthRadius_center, not_sSameSide_bot, AffineBasis.affineSpan_eq_top_of_toMatrix_left_inv, mem_iInf_iff, bot_coe, Convex.interior_nonempty_iff_affineSpan_eq_top, parallel_bot_iff_eq_bot, map_inf_eq, span_union, smul_bot, Affine.Simplex.mongePlane_def, parallel_iff_direction_eq_and_eq_bot_iff_eq_bot, mem_top, smul_top, AffineIndependent.inf_affineSpan_eq_affineSpan_inter, direction_sup, direction_iInf_of_mem, mk'_top, affineSpan_eq_top_iff_vectorSpan_eq_top_of_nonempty, topEquiv_symm_apply_coe, nonempty_sup_left, AffineMap.map_top_of_surjective, direction_iInf, coe_eq_bot_iff, direction_top, Affine.Simplex.span_eq_top, isEmpty_bot, exists_subset_affineIndependent_affineSpan_eq_top, perpBisector_eq_top, map_inf_le, pointwise_vadd_bot, finiteDimensional_sup, AffineIndependent.affineSpan_eq_top_iff_card_eq_finrank_add_one, not_sOppSide_bot, IsOpen.exists_between_affineIndependent_span_eq_top, top_coe, affineSpan_coe_preimage_eq_top, pointwise_vadd_top, nonempty_sup_right, perpBisector_self, span_empty, map_bot, affineSpan_eq_top_of_nonempty_interior, direction_sInf, instIsSimpleOrderOfSubsingleton, topEquiv_apply, direction_sInf_of_mem, span_univ, map_eq_bot_iff, direction_bot, AffineBasis.isUnit_toMatrix_iff, sup_direction_le, instNonemptySubtypeMemTop, affineSpan_eq_bot, comap_supr, map_sup, comap_top, mem_inf_iff, coe_iInf, affineSpan_eq_top_iff_vectorSpan_eq_top_of_nontrivial, IsOpen.affineSpan_eq_top, not_wOppSide_bot, EuclideanGeometry.orthogonalProjection_sup_of_orthogonalProjection_eq, eq_bot_or_nonempty, map_iSup, bot_parallel_iff_eq_bot, sup_direction_lt_of_nonempty_of_inter_empty, notMem_bot, Affine.Simplex.altitude_def, comap_inf, coe_sInf, affineSpan_eq_top_iff_nonempty_of_subsingleton
|
instInhabited π | CompOp | β |
instPartialOrder π | CompOp | 29 mathmath: AffineMap.restrict.bijective, affineSpan_le_toAffineSubspace_span, bot_lt_affineSpan, Affine.Simplex.affineSpan_face_le, le_def', affineSpan_pair_le_of_mem_of_mem, le_def, lt_def, affineSpan_le, Affine.Simplex.affineSpan_faceOpposite_le, Affine.Triangle.affineSpan_orthocenter_point_le_altitude, EuclideanGeometry.Sphere.IsTangentAt.le_orthRadius, AffineMap.restrict.surjective, affineSpan_pair_le_of_left_mem, affineSpan_le_of_subset_coe, map_comap_le, map_inf_le, gc_map_comap, instIsSimpleOrderOfSubsingleton, not_le_iff_exists, affineSpan_pair_le_of_right_mem, EuclideanGeometry.Sphere.orthRadius_le_orthRadius_iff, map_le_iff_le_comap, le_comap_map, affineSpan_mono, inclusion_rfl, Affine.Simplex.map_subtype_restrict, Affine.Simplex.restrict_map_subtype, lt_iff_le_and_exists
|
instSetLike π | CompOp | 330 mathmath: Affine.Simplex.altitudeFoot_restrict, Affine.Simplex.faceOppositeCentroid_mem_affineSpan_face, coe_vsub, Affine.Simplex.orthogonalProjectionSpan_map, EuclideanGeometry.vsub_orthogonalProjection_mem_direction_orthogonal, AffineMap.restrict.bijective, Isometry.preimage_perpBisector, Submodule.mem_toAffineSubspace, Affine.Simplex.ExcenterExists.excenter_notMem_affineSpan_face, self_mem_mk', mem_perpBisector_iff_inner_eq_zero', Affine.Simplex.ExcenterExists.excenter_notMem_affineSpan_faceOpposite, smul_mem_smul_iffβ, Affine.Simplex.circumcenter_mem_affineSpan, Affine.Simplex.restrict_reindex, Affine.Simplex.excenter_singleton_mem_affineSpan_range, Affine.Simplex.faceOppositeCentroid_restrict, EuclideanGeometry.orthogonalProjection_congr, AffineIsometryEquiv.ofTop_apply, mem_sInf_iff, AffineMap.eqOn_affineSpan, EuclideanGeometry.Sphere.mem_orthRadius_iff_inner_right, left_mem_perpBisector, EuclideanGeometry.preimage_inversion_perpBisector_inversion, SSameSide.right_notMem, AffineMap.lineMap_rev_mem_affineSpan_pair, vadd_right_mem_affineSpan_pair, Affine.Simplex.restrict_map_restrict, EuclideanGeometry.orthogonalProjection_contLinear, WSameSide.nonempty, coe_subtypeA, Affine.Simplex.point_mem_median, subtype_apply, EuclideanGeometry.Sphere.mem_tangentsFrom_iff, vadd_mem_mk', smul_vsub_rev_vadd_mem_affineSpan_pair, EuclideanGeometry.inter_eq_singleton_orthogonalProjection, EuclideanGeometry.inversion_mem_perpBisector_inversion_iff', Sbtw.left_mem_affineSpan, linear_topEquiv, Affine.Simplex.orthogonalProjectionSpan_eq_point, EuclideanGeometry.orthogonalProjection_map, Collinear.mem_affineSpan_of_mem_of_ne, Affine.Simplex.circumradius_restrict, Affine.Simplex.ExcenterExists.touchpoint_notMem_affineSpan_of_ne, Affine.Simplex.medial_restrict, wOppSide_iff_exists_wbtw, SOppSide.nonempty, AffineIndependent.mem_affineSpan_iff, coe_subtypeβα΅’, EuclideanGeometry.Sphere.IsTangentAt.mem_space, mem_perpBisector_iff_inner_eq_zero, perpBisector_nonempty, Affine.Simplex.altitudeFoot_mem_affineSpan_image_compl, sSameSide_self_iff, Affine.Simplex.mongePoint_mem_mongePlane, wOppSide_self_iff, coe_eq_univ_iff, affineCombination_mem_affineSpan_pair, mem_intrinsicFrontier, Affine.Simplex.ninePointCircle_restrict, le_def', Affine.Simplex.face_restrict, affineSpan_eq_sInf, finrank_vectorSpan_insert_le, coe_smul, Affine.Simplex.interior_restrict, inclusion_linear, EuclideanGeometry.orthogonalProjection_apply', EuclideanGeometry.Sphere.coe_secondInter, EuclideanGeometry.orthogonalProjection_orthogonalProjection_of_le, mem_affineSpan_iff_eq_affineCombination, EuclideanGeometry.Sphere.isTangent_iff_isTangentAt_orthogonalProjection, affineCombination_mem_affineSpan, le_def, mem_iInf_iff, EuclideanGeometry.preimage_inversion_perpBisector, WOppSide.nonempty, bot_coe, Isometry.mapsTo_perpBisector, AffineIsometryEquiv.coe_ofEq_apply, inf_coe, Affine.Simplex.altitude_restrict_eq_comap_subtype, isometryEquivMap.toAffineMap_eq, lt_def, Affine.Simplex.signedInfDist_apply_self, Affine.Simplex.centroid_notMem_affineSpan_of_ne_univ, coe_inf, wSameSide_and_wOppSide_iff, signedInfDist_eq_signedDist_orthogonalProjection, AffineEquiv.linear_ofEq, coe_pointwise_vadd, Affine.Simplex.incenter_notMem_affineSpan_face, AffineIsometryEquiv.ofTop_symm_apply_coe, Affine.Simplex.orthogonalProjectionSpan_congr, EuclideanGeometry.image_inversion_perpBisector, AffineIsometryEquiv.ofEq_symm, SOppSide.right_notMem, EuclideanGeometry.reflection_eq_self_iff, Affine.Simplex.altitudeFoot_mem_affineSpan, Affine.Simplex.ExcenterExists.touchpointWeights_restrict, affineSpan_le, smul_vsub_vadd_mem_affineSpan_pair, right_mem_affineSpan_pair, instIsTopologicalAddTorsorSubtypeMemSubmoduleDirection, mem_top, mem_affineSpan_pair_iff_exists_lineMap_rev_eq, EuclideanGeometry.image_inversion_sphere_dist_center, EuclideanGeometry.orthogonalProjection_subtype, finiteDimensional_direction_affineSpan_insert, Affine.Simplex.ExcenterExists.excenter_restrict, Affine.Simplex.points_mem_affineSpan_face, closed_of_finiteDimensional, toContinuousAffineMap_subtypeβα΅’, Affine.Simplex.points_mem_affineSpan_faceOpposite, mem_affineSpan, Affine.Simplex.circumsphere_unique_dist_eq, smul_mem_smul_iff_of_isUnit, EuclideanGeometry.preimage_inversion_sphere_dist_center, Affine.Simplex.map_altitude_restrict, Affine.Simplex.faceOpposite_restrict, convex, affineSpan_subset_span, Affine.Simplex.exradius_restrict, Affine.Simplex.orthogonalProjection_circumcenter, centroid_mem_affineSpan_of_nonempty, subtypeA_toAffineMap, vadd_mem_iff_mem_of_mem_direction, mem_map, mem_map_iff_mem_of_injective, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_exists_dist_eq, Affine.Simplex.touchpoint_mem_affineSpan, coe_vadd, Affine.Simplex.altitudeFoot_mem_altitude, coe_affineSpan, Affine.Simplex.circumcenter_restrict, AffineMap.restrict.injective, Affine.Simplex.height_restrict, EuclideanGeometry.orthogonalProjection_affineSpan_singleton, subtype_injective, subtype_linear, affineCombination_mem_affineSpan_image, EuclideanGeometry.Sphere.mem_of_mem_tangentsFrom, topEquiv_symm_apply_coe, isometryEquivMap.coe_apply, Affine.Simplex.mem_affineSpan_image_iff, mem_comap, nonempty_sup_left, centroid_mem_affineSpan_of_cast_card_ne_zero, intrinsicClosure_eq_closure_inter_affineSpan, exists_of_lt, EuclideanGeometry.Sphere.IsTangentAt.mem_and_mem_iff_eq, wSameSide_self_iff, Affine.Simplex.incenter_restrict, mem_perpBisector_iff_inner_eq_inner, EuclideanGeometry.Sphere.IsTangent.infDist_eq_radius, mk'_nonempty, mem_affineSpan_pair_iff_exists_lineMap_eq, EuclideanGeometry.Sphere.IsTangent.notMem_of_dist_lt, Affine.Simplex.orthogonalProjectionSpan_faceOpposite_eq_point_rev, EuclideanGeometry.exists_dist_eq_circumradius_of_subset_insert_orthocenter, EuclideanGeometry.dist_orthogonalProjection_eq_infNndist, coe_eq_bot_iff, SOppSide.left_notMem, MeasureTheory.Measure.addHaar_affineSubspace, Affine.Simplex.ExcenterExists.excenter_notMem_affineSpan_pair, AffineMap.restrict.surjective, Affine.Simplex.inradius_restrict, subtypeβα΅’_linear, AffineMap.restrict.coe_apply, mem_affineSpan_iff_eq_weightedVSubOfPoint_vadd, mem_affineSpan_iff_exists, subset_affineSpan, left_mem_affineSpan_pair, EuclideanGeometry.Sphere.dist_orthogonalProjection_eq_radius_iff_isTangent, EuclideanGeometry.orthogonalProjection_eq_orthogonalProjection_iff_vsub_mem, isEmpty_bot, Affine.Simplex.centroid_restrict, mem_perpBisector_iff_dist_eq', Affine.Simplex.ninePointCircle_center_mem_affineSpan, Affine.Simplex.affineCombination_mem_affineSpan_faceOpposite_iff, EuclideanGeometry.dist_orthogonalProjection_eq_infDist, EuclideanGeometry.orthogonalProjection_mem, Affine.Simplex.orthogonalProjectionSpan_restrict, midpoint_mem_perpBisector, direction_eq_vectorSpan, EuclideanGeometry.Sphere.center_mem_orthRadius_iff, Affine.Simplex.setInterior_restrict, Affine.Simplex.ExcenterExists.excenter_mem_affineSpan_range, ext_iff, Affine.Triangle.orthocenter_mem_altitude, Affine.Simplex.excenterWeights_restrict, EuclideanGeometry.dist_orthogonalProjection_eq_zero_iff, AffineEquiv.ofEq_symm, smul_mem_smul_iff, linear_equivMapOfInjective, EuclideanGeometry.Sphere.IsTangentAt.eq_orthogonalProjection, top_coe, Affine.Simplex.median_restrict, Affine.Simplex.points_notMem_affineSpan_faceOpposite, EuclideanGeometry.Sphere.secondInter_vsub_mem_affineSpan, affineSpan_coe_preimage_eq_top, nonempty_sup_right, EuclideanGeometry.reflection_eq_iff_orthogonalProjection_eq, Affine.Simplex.closedInterior_restrict, Affine.Simplex.incenter_mem_affineSpan_range, EuclideanGeometry.orthogonalProjection_orthogonalProjection, vectorSpan_add_self, not_le_iff_exists, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_dist_eq, Affine.Simplex.incenter_notMem_affineSpan_pair, preimage_coe_affineSpan_singleton, topEquiv_apply, affineSegment_subset_affineSpan, Affine.Simplex.mongePoint_restrict, mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero, affineCombination_mem_affineSpan_of_nonempty, Affine.Simplex.eulerPoint_restrict, Affine.Simplex.faceOppositeCentroid_mem_median, coe_inclusion_apply, EuclideanGeometry.inversion_mem_perpBisector_inversion_iff, Affine.Simplex.ExcenterExists.touchpoint_restrict, affineSpan_nonempty, Affine.Simplex.excenterWeightsUnnorm_restrict, subtypeβα΅’_linearIsometry, Affine.Triangle.orthocenter_mem_affineSpan, Affine.Simplex.mongePoint_mem_affineSpan, EuclideanGeometry.Sphere.IsTangent.isTangentAt, instNonemptySubtypeMemTop, IsClosed.convexHull_subset_affineSpan_isVisible, mem_perpBisector_iff_dist_eq, EuclideanGeometry.reflection_apply', AffineIsometryEquiv.ofEq_rfl, mem_fintypeAffineCoords_iff_sum, Affine.Simplex.centroid_mem_median, AffineEquiv.coe_ofEq_apply, EuclideanGeometry.Sphere.isTangentAt_center_iff, AffineMap.restrict.linear, instNonemptySubtypeMemMk', coe_subtype, Affine.Simplex.orthogonalProjectionSpan_reindex, Affine.Simplex.touchpoint_empty_notMem_affineSpan_of_ne, EuclideanGeometry.orthogonalProjection_linear, signedInfDist_def, vadd_mem_pointwise_vadd_iff, Affine.Simplex.mem_altitude, Affine.Simplex.orthogonalProjectionSpan_eulerPoint_mem_ninePointCircle, AffineIndependent.injOn_affineCombination_fintypeAffineCoords, centroid_mem_affineSpan_of_card_eq_add_one, mem_mk', mem_affineSpan_singleton, Affine.Simplex.signedInfDist_affineCombination, EuclideanGeometry.Sphere.mem_commonIntTangents_iff, angle_coe, mem_inf_iff, EuclideanGeometry.orthogonalProjection_eq_self_iff, mem_perpBisector_iff_inner_eq, EuclideanGeometry.reflection_subtype, Set.Nonempty.affineSpan, isometryEquivMap.apply_symm_apply, SSameSide.left_notMem, inclusion_rfl, coe_injective, SOppSide.exists_sbtw, coe_iInf, EuclideanGeometry.orthogonalProjection_vsub_mem_direction_orthogonal, Affine.Simplex.setInterior_subset_affineSpan, Affine.Simplex.touchpoint_mem_affineSpan_simplex, EuclideanGeometry.eq_orthogonalProjection_of_eq_subspace, Sbtw.right_mem_affineSpan, EuclideanGeometry.orthogonalProjection_apply, AffineIndependent.affineSpan_disjoint_of_disjoint, AffineIndependent.existsUnique_dist_eq, signedInfDist_apply_self, EuclideanGeometry.orthogonalProjection_vsub_orthogonalProjection, EuclideanGeometry.orthogonalProjection_mem_orthogonal, Wbtw.mem_affineSpan, mem_intrinsicInterior, nonempty_map, centroid_mem_affineSpan_of_card_ne_zero, equivMapOfInjective_toFun, instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem, Wbtw.left_mem_affineSpan_of_right_ne, EuclideanGeometry.coe_orthogonalProjection_eq_iff_mem, eq_bot_or_nonempty, Affine.Simplex.map_subtype_restrict, mem_finsuppAffineCoords_iff_linearCombination, Wbtw.right_mem_affineSpan_of_left_ne, Affine.Simplex.restrict_map_subtype, AffineIndependent.notMem_affineSpan_diff, subtypeβα΅’_toAffineMap, mem_perpBisector_pointReflection_iff_inner_eq_zero, mem_coe, Affine.Simplex.altitudeFoot_mem_affineSpan_faceOpposite, AffineMap.lineMap_mem_affineSpan_pair, Affine.Simplex.affineSpan_pair_eq_altitude_iff, Affine.Simplex.closedInterior_subset_affineSpan, Affine.Simplex.restrict_map_inclusion, EuclideanGeometry.dist_orthogonalProjection_line_eq_iff_two_zsmul_oangle_eq, EuclideanGeometry.orthogonalProjection_eq_iff_mem, EuclideanGeometry.dist_orthogonalProjection_line_eq_of_two_zsmul_oangle_eq, affineSpan_insert_affineSpan, coe_comap, nonempty_iff_ne_bot, SSameSide.nonempty, affineSpan_insert_zero, Affine.Simplex.incenter_notMem_affineSpan_faceOpposite, convexHull_subset_affineSpan, affineSpan_coe, right_mem_perpBisector, EuclideanGeometry.Sphere.dist_orthogonalProjection_eq_radius_iff_isTangentAt, EuclideanGeometry.reflection_apply, EuclideanGeometry.Sphere.mem_orthRadius_iff_inner_left, Affine.Simplex.centroid_mem_affineSpan, AffineEquiv.ofEq_rfl, notMem_bot, isClosed_direction_iff, finiteDimensional_vectorSpan_insert, coe_affineSpan_singleton, EuclideanGeometry.Sphere.infDist_eq_radius_iff_isTangent, vadd_left_mem_affineSpan_pair, intrinsicClosure_subset_affineSpan, lt_iff_le_and_exists, Affine.Simplex.restrict_points_coe, EuclideanGeometry.Sphere.self_mem_orthRadius, Affine.Simplex.excenterExists_restrict, coe_sInf, mem_intrinsicClosure, EuclideanGeometry.orthogonalProjection_mem_subspace_eq_self, coe_map
|
mk' π | CompOp | 13 mathmath: self_mem_mk', vadd_mem_mk', EuclideanGeometry.inter_eq_singleton_orthogonalProjection, map_mk', Affine.Simplex.mongePlane_def, mk'_top, mk'_nonempty, instNonemptySubtypeMemMk', mem_mk', direction_mk', EuclideanGeometry.orthogonalProjection_mem_orthogonal, mk'_eq, Affine.Simplex.altitude_def
|