Documentation Verification Report

Centroid

πŸ“ Source: Mathlib/LinearAlgebra/AffineSpace/Centroid.lean

Statistics

MetricCount
Definitionscentroid, centroidWeights, centroidWeightsIndicator
3
TheoremscentroidWeightsIndicator_def, centroidWeights_apply, centroidWeights_eq_const, centroid_def, centroid_eq_affineCombination_fintype, centroid_eq_centroid_image_of_inj_on, centroid_eq_of_inj_on_of_image_eq, centroid_map, centroid_pair, centroid_pair_fin, centroid_singleton, centroid_univ, centroid_vsub_const, sum_centroidWeightsIndicator, sum_centroidWeightsIndicator_eq_one_of_card_eq_add_one, sum_centroidWeightsIndicator_eq_one_of_card_ne_zero, sum_centroidWeightsIndicator_eq_one_of_nonempty, sum_centroidWeights_eq_one_of_card_eq_add_one, sum_centroidWeights_eq_one_of_card_ne_zero, sum_centroidWeights_eq_one_of_cast_card_ne_zero, sum_centroidWeights_eq_one_of_nonempty, centroid_mem_affineSpan_of_card_eq_add_one, centroid_mem_affineSpan_of_card_ne_zero, centroid_mem_affineSpan_of_cast_card_ne_zero, centroid_mem_affineSpan_of_nonempty
25
Total28

Finset

Definitions

NameCategoryTheorems
centroid πŸ“–CompOp
30 mathmath: centroid_eq_affineCombination_fintype, Affine.Simplex.face_centroid_eq_iff, Affine.Simplex.univ_centroid_eq, Affine.Triangle.orthocenter_eq_smul_vsub_vadd_circumcenter, Affine.Simplex.centroid_eq_of_range_eq, Affine.Simplex.inner_mongePoint_vsub_face_centroid_vsub, centroid_map, Affine.Simplex.face_centroid_eq_centroid, Affine.Simplex.mongePlane_def, centroid_mem_affineSpan_of_nonempty, centroid_univ, centroid_eq_centerMass, centroid_mem_affineSpan_of_cast_card_ne_zero, AffineBasis.coord_apply_centroid, Affine.Simplex.mongePoint_eq_smul_vsub_vadd_circumcenter, centroid_mem_convexHull, centroid_vsub_const, centroid_singleton, centroid_eq_centroid_image_of_inj_on, Affine.Simplex.centroid_eq_iff, Affine.Simplex.mongePoint_vsub_face_centroid_eq_weightedVSub_of_pointsWithCircumcenter, centroid_pair, centroid_pair_fin, centroid_mem_affineSpan_of_card_eq_add_one, centroid_eq_of_inj_on_of_image_eq, AffineBasis.centroid_mem_interior_convexHull, centroid_mem_affineSpan_of_card_ne_zero, Affine.Simplex.circumcenter_eq_centroid, centroid_def, Affine.Simplex.centroid_eq_affineCombination_of_pointsWithCircumcenter
centroidWeights πŸ“–CompOp
11 mathmath: sum_centroidWeights_eq_one_of_card_eq_add_one, centroidWeights_apply, sum_centroidWeights_eq_one_of_card_ne_zero, centroid_eq_centerMass, sum_centroidWeightsIndicator, centroidWeightsIndicator_def, sum_centroidWeights_eq_one_of_nonempty, Affine.Simplex.centroid_eq_affineCombination, centroidWeights_eq_const, sum_centroidWeights_eq_one_of_cast_card_ne_zero, centroid_def
centroidWeightsIndicator πŸ“–CompOp
6 mathmath: sum_centroidWeightsIndicator_eq_one_of_nonempty, centroid_eq_affineCombination_fintype, sum_centroidWeightsIndicator_eq_one_of_card_ne_zero, sum_centroidWeightsIndicator, sum_centroidWeightsIndicator_eq_one_of_card_eq_add_one, centroidWeightsIndicator_def

Theorems

NameKindAssumesProvesValidatesDepends On
centroidWeightsIndicator_def πŸ“–mathematicalβ€”centroidWeightsIndicator
Set.indicator
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
SetLike.coe
Finset
instSetLike
centroidWeights
β€”β€”
centroidWeights_apply πŸ“–mathematicalβ€”centroidWeights
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
card
β€”β€”
centroidWeights_eq_const πŸ“–mathematicalβ€”centroidWeights
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
card
β€”β€”
centroid_def πŸ“–mathematicalβ€”centroid
DFunLike.coe
AffineMap
DivisionRing.toRing
Pi.addCommGroup
Ring.toAddCommGroup
Pi.Function.module
Ring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Semiring.toModule
instAddTorsorForall
AffineMap.instFunLike
affineCombination
centroidWeights
β€”β€”
centroid_eq_affineCombination_fintype πŸ“–mathematicalβ€”centroid
DFunLike.coe
AffineMap
DivisionRing.toRing
Pi.addCommGroup
Ring.toAddCommGroup
Pi.Function.module
Ring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Semiring.toModule
instAddTorsorForall
AffineMap.instFunLike
affineCombination
univ
centroidWeightsIndicator
β€”affineCombination_indicator_subset
subset_univ
centroid_eq_centroid_image_of_inj_on πŸ“–mathematicalSet.image
SetLike.coe
Finset
instSetLike
centroid
Set.Elem
univ
Set
Set.instMembership
β€”ext
mem_map
Set.mem_image_of_mem
mem_univ
centroid_map
centroid_eq_of_inj_on_of_image_eq πŸ“–mathematicalSet.image
SetLike.coe
Finset
instSetLike
centroidβ€”centroid_eq_centroid_image_of_inj_on
centroid_map πŸ“–mathematicalβ€”centroid
map
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”card_map
affineCombination_map
centroid_pair πŸ“–mathematicalβ€”centroid
Finset
instInsert
instSingleton
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Nat.instAtLeastTwoHAddOfNat
VSub.vsub
AddTorsor.toVSub
β€”Nat.instAtLeastTwoHAddOfNat
insert_eq_of_mem
centroid_singleton
vsub_self
smul_zero
zero_vadd
card_insert_of_notMem
notMem_singleton
card_singleton
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
Invertible.ne_zero
DivisionRing.toNontrivial
centroid_def
affineCombination_eq_weightedVSubOfPoint_vadd_of_sum_eq_one
sum_centroidWeights_eq_one_of_cast_card_ne_zero
weightedVSubOfPoint_insert
weightedVSubOfPoint_apply
sum_congr
one_add_one_eq_two
sum_singleton
centroid_pair_fin πŸ“–mathematicalβ€”centroid
univ
Fin.fintype
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Nat.instAtLeastTwoHAddOfNat
VSub.vsub
AddTorsor.toVSub
β€”Nat.instAtLeastTwoHAddOfNat
univ_fin2
centroid_pair
centroid_singleton πŸ“–mathematicalβ€”centroid
Finset
instSingleton
β€”AddTorsor.nonempty
weightedVSubOfPoint_apply
sum_congr
card_singleton
Nat.cast_one
inv_one
one_smul
sum_singleton
vsub_vadd
centroid_univ πŸ“–mathematicalβ€”centroid
Finset
SetLike.instMembership
instSetLike
univ
Subtype.fintype
β€”centroid.eq_1
attach_affineCombination_coe
card_attach
centroid_vsub_const πŸ“–mathematicalNonemptyVSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
centroid
addGroupIsAddTorsor
β€”sum_centroidWeights_eq_one_of_nonempty
sum_centroidWeightsIndicator πŸ“–mathematicalβ€”sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
univ
centroidWeightsIndicator
centroidWeights
β€”sum_indicator_subset
subset_univ
sum_centroidWeightsIndicator_eq_one_of_card_eq_add_one πŸ“–mathematicalcardsum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
univ
centroidWeightsIndicator
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”sum_centroidWeightsIndicator
sum_centroidWeights_eq_one_of_card_eq_add_one
sum_centroidWeightsIndicator_eq_one_of_card_ne_zero πŸ“–mathematicalβ€”sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
univ
centroidWeightsIndicator
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”sum_centroidWeightsIndicator
sum_centroidWeights_eq_one_of_card_ne_zero
sum_centroidWeightsIndicator_eq_one_of_nonempty πŸ“–mathematicalNonemptysum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
univ
centroidWeightsIndicator
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”sum_centroidWeightsIndicator
sum_centroidWeights_eq_one_of_nonempty
sum_centroidWeights_eq_one_of_card_eq_add_one πŸ“–mathematicalcardsum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
centroidWeights
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”sum_centroidWeights_eq_one_of_card_ne_zero
sum_centroidWeights_eq_one_of_card_ne_zero πŸ“–mathematicalβ€”sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
centroidWeights
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”sum_congr
sum_const
nsmul_eq_mul
mul_inv_cancelβ‚€
sum_centroidWeights_eq_one_of_cast_card_ne_zero πŸ“–mathematicalβ€”sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
centroidWeights
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”sum_congr
sum_const
nsmul_eq_mul
mul_inv_cancelβ‚€
sum_centroidWeights_eq_one_of_nonempty πŸ“–mathematicalNonemptysum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
centroidWeights
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”sum_centroidWeights_eq_one_of_card_ne_zero
ne_of_gt
card_pos

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
centroid_mem_affineSpan_of_card_eq_add_one πŸ“–mathematicalFinset.cardAffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set.range
Finset.centroid
β€”affineCombination_mem_affineSpan
instNontrivialOfCharZero
Finset.sum_centroidWeights_eq_one_of_card_eq_add_one
centroid_mem_affineSpan_of_card_ne_zero πŸ“–mathematicalβ€”AffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set.range
Finset.centroid
β€”affineCombination_mem_affineSpan
instNontrivialOfCharZero
Finset.sum_centroidWeights_eq_one_of_card_ne_zero
centroid_mem_affineSpan_of_cast_card_ne_zero πŸ“–mathematicalβ€”AffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set.range
Finset.centroid
β€”affineCombination_mem_affineSpan
DivisionRing.toNontrivial
Finset.sum_centroidWeights_eq_one_of_cast_card_ne_zero
centroid_mem_affineSpan_of_nonempty πŸ“–mathematicalFinset.NonemptyAffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set.range
Finset.centroid
β€”affineCombination_mem_affineSpan
instNontrivialOfCharZero
Finset.sum_centroidWeights_eq_one_of_nonempty

---

← Back to Index