Documentation Verification Report

FiniteDimensional

πŸ“ Source: Mathlib/LinearAlgebra/AffineSpace/FiniteDimensional.lean

Statistics

MetricCount
DefinitionsCollinear, Coplanar
2
Theoremscollinear_point_centroid_faceOppositeCentroid, span_eq_top, card_eq_finrank_add_one, exists_affineBasis_of_finiteDimensional, finite, finiteDimensional, finite_set, affineSpan_eq_of_le_of_card_eq_finrank_add_one, affineSpan_eq_top_iff_card_eq_finrank_add_one, affineSpan_image_finset_eq_of_le_of_card_eq_finrank_add_one, card_le_card_of_subset_affineSpan, card_le_finrank_succ, card_lt_card_of_affineSpan_lt_affineSpan, finrank_vectorSpan, finrank_vectorSpan_add_one, finrank_vectorSpan_image_finset, vectorSpan_eq_of_le_of_card_eq_finrank_add_one, vectorSpan_eq_top_of_card_eq_finrank_add_one, vectorSpan_image_finset_eq_of_le_of_card_eq_finrank_add_one, finiteDimensional_sup, affineSpan_eq_of_ne, collinear_insert_iff_of_ne, coplanar, coplanar_insert, finiteDimensional_direction_affineSpan, finiteDimensional_vectorSpan, finrank_le_one, mem_affineSpan_of_mem_of_ne, subset, finiteDimensional_direction_affineSpan, finiteDimensional_vectorSpan, finrank_le_two, subset, affineIndependent_iff_affineIndependent_collinear_ne, affineIndependent_iff_finrank_vectorSpan_eq, affineIndependent_iff_le_finrank_vectorSpan, affineIndependent_iff_not_collinear, affineIndependent_iff_not_collinear_of_ne, affineIndependent_iff_not_collinear_set, affineIndependent_iff_not_finrank_vectorSpan_le, affineIndependent_of_affineIndependent_collinear_ne, collinear_empty, collinear_iff_exists_forall_eq_smul_vadd, collinear_iff_finrank_le_one, collinear_iff_not_affineIndependent, collinear_iff_not_affineIndependent_of_ne, collinear_iff_not_affineIndependent_set, collinear_iff_of_mem, collinear_iff_rank_le_one, collinear_insert_iff_of_mem_affineSpan, collinear_insert_insert_insert_left_of_mem_affineSpan_pair, collinear_insert_insert_insert_of_mem_affineSpan_pair, collinear_insert_insert_of_mem_affineSpan_pair, collinear_insert_of_mem_affineSpan_pair, collinear_pair, collinear_singleton, collinear_triple_of_mem_affineSpan_pair, coplanar_empty, coplanar_iff_finrank_le_two, coplanar_insert_iff_of_mem_affineSpan, coplanar_of_fact_finrank_eq_two, coplanar_of_finrank_eq_two, coplanar_pair, coplanar_singleton, coplanar_triple, finiteDimensional_direction_affineSpan_image_of_finite, finiteDimensional_direction_affineSpan_insert, finiteDimensional_direction_affineSpan_insert_set, finiteDimensional_direction_affineSpan_of_finite, finiteDimensional_direction_affineSpan_range, finiteDimensional_direction_affineSpan_singleton, finiteDimensional_direction_map, finiteDimensional_vectorSpan_image_of_finite, finiteDimensional_vectorSpan_insert, finiteDimensional_vectorSpan_insert_set, finiteDimensional_vectorSpan_of_finite, finiteDimensional_vectorSpan_range, finiteDimensional_vectorSpan_singleton, finite_of_fin_dim_affineIndependent, finite_set_of_fin_dim_affineIndependent, finrank_vectorSpan_image_finset_le, finrank_vectorSpan_insert_le, finrank_vectorSpan_insert_le_set, finrank_vectorSpan_le_iff_not_affineIndependent, finrank_vectorSpan_range_add_one_le, finrank_vectorSpan_range_le, ne₁₂_of_not_collinear, ne₁₃_of_not_collinear, ne₂₃_of_not_collinear
89
Total91

Affine.Simplex

Theorems

NameKindAssumesProvesValidatesDepends On
collinear_point_centroid_faceOppositeCentroid πŸ“–mathematicalβ€”Collinear
Set
Set.instInsert
points
DivisionRing.toRing
centroid
Set.instSingletonSet
faceOppositeCentroid
β€”collinear_insert_of_mem_affineSpan_pair
neg_vsub_eq_vsub_rev
neg_smul_neg
point_vsub_centroid_eq_smul_vsub
vsub_vadd
smul_vsub_vadd_mem_affineSpan_pair
span_eq_top πŸ“–mathematicalModule.finrank
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
affineSpan
DivisionRing.toRing
addGroupIsAddTorsor
AddCommGroup.toAddGroup
Set.range
points
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
AffineSubspace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”AffineIndependent.affineSpan_eq_top_iff_card_eq_finrank_add_one
independent
Fintype.card_fin

AffineBasis

Theorems

NameKindAssumesProvesValidatesDepends On
card_eq_finrank_add_one πŸ“–mathematicalβ€”Fintype.card
Module.finrank
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
β€”finiteDimensional
Finite.of_fintype
AffineIndependent.affineSpan_eq_top_iff_card_eq_finrank_add_one
ind
tot
exists_affineBasis_of_finiteDimensional πŸ“–mathematicalFintype.card
Module.finrank
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
AffineBasis
DivisionRing.toRing
β€”exists_affineBasis
CanLift.prf
Set.instCanLiftFinsetCoeFinite
finite_set
card_eq_finrank_add_one
finite πŸ“–mathematicalβ€”Finiteβ€”finite_of_fin_dim_affineIndependent
ind
finiteDimensional πŸ“–mathematicalβ€”FiniteDimensionalβ€”nonempty
Module.Basis.finiteDimensional_of_finite
Subtype.finite
finite_set πŸ“–mathematicalβ€”Set.Finiteβ€”finite_set_of_fin_dim_affineIndependent
ind

AffineIndependent

Theorems

NameKindAssumesProvesValidatesDepends On
affineSpan_eq_of_le_of_card_eq_finrank_add_one πŸ“–β€”AffineIndependent
DivisionRing.toRing
AffineSubspace
Preorder.toLE
PartialOrder.toPreorder
AffineSubspace.instPartialOrder
affineSpan
Set.range
Fintype.card
Module.finrank
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
AffineSubspace.direction
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
β€”β€”Set.image_univ
Finset.coe_univ
Finset.coe_image
affineSpan_image_finset_eq_of_le_of_card_eq_finrank_add_one
Finset.card_univ
affineSpan_eq_top_iff_card_eq_finrank_add_one πŸ“–mathematicalAffineIndependent
DivisionRing.toRing
affineSpan
Set.range
Top.top
AffineSubspace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
AffineSubspace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Fintype.card
Module.finrank
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
β€”AffineSubspace.card_pos_of_affineSpan_eq_top
finrank_top
AffineSubspace.vectorSpan_eq_top_of_affineSpan_eq_top
finrank_vectorSpan
affineSpan_eq_of_le_of_card_eq_finrank_add_one
FiniteDimensional.finiteDimensional_submodule
le_top
AffineSubspace.direction_top
affineSpan_image_finset_eq_of_le_of_card_eq_finrank_add_one πŸ“–β€”AffineIndependent
DivisionRing.toRing
AffineSubspace
Preorder.toLE
PartialOrder.toPreorder
AffineSubspace.instPartialOrder
affineSpan
SetLike.coe
Finset
Finset.instSetLike
Finset.image
Finset.card
Module.finrank
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
AffineSubspace.direction
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
β€”β€”Finset.card_pos
AffineSubspace.eq_of_direction_eq_of_nonempty_of_le
AffineSubspace.direction_le
direction_affineSpan
vectorSpan_image_finset_eq_of_le_of_card_eq_finrank_add_one
Set.Nonempty.affineSpan
Finset.Nonempty.to_set
Finset.Nonempty.image
card_le_card_of_subset_affineSpan πŸ“–mathematicalAffineIndependent
DivisionRing.toRing
addGroupIsAddTorsor
AddCommGroup.toAddGroup
Finset
SetLike.instMembership
Finset.instSetLike
Set
Set.instHasSubset
SetLike.coe
AffineSubspace
AffineSubspace.instSetLike
affineSpan
Finset.cardβ€”Finset.eq_empty_or_nonempty
Nat.instCanonicallyOrderedAdd
Finset.coe_empty
AffineSubspace.span_empty
Finset.Nonempty.to_subtype
Set.Nonempty.to_subtype
Finset.Nonempty.to_set
AffineSubspace.direction_le
affineSpan_mono
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Submodule.finrank_mono
IsNoetherianRing.strongRankCondition
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
PrincipalIdealRing.isNoetherianRing
DivisionSemiring.isPrincipalIdealRing
finiteDimensional_vectorSpan_range
Finite.of_fintype
Subtype.range_coe
direction_affineSpan
AffineSubspace.affineSpan_coe
Fintype.card_coe
Fintype.card_congr'
LE.le.trans
finrank_vectorSpan_add_one
finrank_vectorSpan_range_add_one_le
card_le_finrank_succ πŸ“–mathematicalAffineIndependent
DivisionRing.toRing
Fintype.card
Module.finrank
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set.range
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
β€”isEmpty_or_nonempty
Fintype.card_eq_zero
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
tsub_le_iff_right
Nat.instOrderedSub
affineIndependent_iff_le_finrank_vectorSpan
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Fintype.card_ne_zero
card_lt_card_of_affineSpan_lt_affineSpan πŸ“–mathematicalAffineIndependent
DivisionRing.toRing
addGroupIsAddTorsor
AddCommGroup.toAddGroup
Finset
SetLike.instMembership
Finset.instSetLike
AffineSubspace
Preorder.toLT
PartialOrder.toPreorder
AffineSubspace.instPartialOrder
affineSpan
SetLike.coe
Finset.cardβ€”Finset.eq_empty_or_nonempty
Finset.coe_empty
AffineSubspace.span_empty
Finset.Nonempty.to_subtype
Set.Nonempty.to_subtype
Finset.Nonempty.to_set
AffineSubspace.direction_lt_of_nonempty
Set.Nonempty.affineSpan
add_lt_add_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Submodule.finrank_lt_finrank_of_lt
finiteDimensional_vectorSpan_range
Finite.of_fintype
Subtype.range_coe
direction_affineSpan
Fintype.card_coe
Fintype.card_congr'
LT.lt.trans_le
finrank_vectorSpan_add_one
finrank_vectorSpan_range_add_one_le
finrank_vectorSpan πŸ“–mathematicalAffineIndependent
DivisionRing.toRing
Fintype.card
Module.finrank
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set.range
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
β€”Set.image_univ
Finset.coe_univ
Finset.coe_image
finrank_vectorSpan_image_finset
Finset.card_univ
finrank_vectorSpan_add_one πŸ“–mathematicalAffineIndependent
DivisionRing.toRing
Module.finrank
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set.range
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
Fintype.card
β€”finrank_vectorSpan
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
Fintype.card_pos
finrank_vectorSpan_image_finset πŸ“–mathematicalAffineIndependent
DivisionRing.toRing
Finset.card
Module.finrank
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
SetLike.coe
Finset
Finset.instSetLike
Finset.image
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
β€”mono
range
Set.image_subset_range
Finset.card_image_of_injective
injective
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instNoMaxOrder
Nat.instCanonicallyOrderedAdd
vsub_left_injective
Finset.card_erase_of_mem
vectorSpan_eq_span_vsub_finset_right_ne
finrank_span_finset_eq_card
IsNoetherianRing.strongRankCondition
PrincipalIdealRing.isNoetherianRing
DivisionSemiring.isPrincipalIdealRing
Finset.coe_image
Finset.sdiff_singleton_eq_erase
Finset.coe_sdiff
Finset.coe_singleton
affineIndependent_set_iff_linearIndependent_vsub
vectorSpan_eq_of_le_of_card_eq_finrank_add_one πŸ“–β€”AffineIndependent
DivisionRing.toRing
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
vectorSpan
Set.range
Fintype.card
Module.finrank
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
β€”β€”Submodule.eq_of_le_of_finrank_eq
finrank_vectorSpan
vectorSpan_eq_top_of_card_eq_finrank_add_one πŸ“–mathematicalAffineIndependent
DivisionRing.toRing
Fintype.card
Module.finrank
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
vectorSpan
Set.range
Top.top
Submodule
Ring.toSemiring
Submodule.instTop
β€”Submodule.eq_top_of_finrank_eq
finrank_vectorSpan
vectorSpan_image_finset_eq_of_le_of_card_eq_finrank_add_one πŸ“–β€”AffineIndependent
DivisionRing.toRing
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
vectorSpan
SetLike.coe
Finset
Finset.instSetLike
Finset.image
Finset.card
Module.finrank
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
β€”β€”Submodule.eq_of_le_of_finrank_eq
finrank_vectorSpan_image_finset

AffineSubspace

Theorems

NameKindAssumesProvesValidatesDepends On
finiteDimensional_sup πŸ“–mathematicalβ€”FiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
direction
AffineSubspace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Submodule.addCommGroup
Submodule.module
β€”eq_bot_or_nonempty
bot_sup_eq
sup_bot_eq
direction_sup
Submodule.finiteDimensional_sup
FiniteDimensional.span_singleton

Collinear

Theorems

NameKindAssumesProvesValidatesDepends On
affineSpan_eq_of_ne πŸ“–mathematicalCollinear
Set
Set.instMembership
affineSpan
DivisionRing.toRing
Set.instInsert
Set.instSingletonSet
β€”le_antisymm
affineSpan_mono
Set.insert_subset_iff
Set.singleton_subset_iff
affineSpan_le
mem_affineSpan_of_mem_of_ne
collinear_insert_iff_of_ne πŸ“–mathematicalCollinear
Set
Set.instMembership
Set.instInsert
Set.instSingletonSet
β€”direction_affineSpan
affineSpan_insert_affineSpan
affineSpan_eq_of_ne
eq_1
coplanar πŸ“–mathematicalCollinearCoplanarβ€”le_trans
one_le_two
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
Cardinal.addLeftMono
coplanar_insert πŸ“–mathematicalCollinearCoplanar
Set
Set.instInsert
β€”finiteDimensional_vectorSpan
coplanar_iff_finrank_le_two
finiteDimensional_vectorSpan_insert_set
le_imp_le_of_le_of_le
finrank_vectorSpan_insert_le_set
le_refl
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
finrank_le_one
finiteDimensional_direction_affineSpan πŸ“–mathematicalCollinearFiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
AffineSubspace.direction
affineSpan
Submodule.addCommGroup
Submodule.module
β€”finiteDimensional_vectorSpan
direction_affineSpan
finiteDimensional_vectorSpan πŸ“–mathematicalCollinearFiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Submodule.addCommGroup
Submodule.module
β€”IsNoetherian.iff_fg
IsNoetherian.iff_rank_lt_aleph0
lt_of_le_of_lt
Cardinal.one_lt_aleph0
finrank_le_one πŸ“–mathematicalCollinearModule.finrank
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
β€”collinear_iff_finrank_le_one
mem_affineSpan_of_mem_of_ne πŸ“–mathematicalCollinear
Set
Set.instMembership
AffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set.instInsert
Set.instSingletonSet
β€”collinear_iff_of_mem
vadd_left_mem_affineSpan_pair
zero_smul
zero_vadd
vadd_vsub
smul_smul
IsUnit.div_mul_cancel
subset πŸ“–β€”Set
Set.instHasSubset
Collinear
β€”β€”LE.le.trans
Submodule.rank_mono
vectorSpan_mono

Coplanar

Theorems

NameKindAssumesProvesValidatesDepends On
finiteDimensional_direction_affineSpan πŸ“–mathematicalCoplanarFiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
AffineSubspace.direction
affineSpan
Submodule.addCommGroup
Submodule.module
β€”finiteDimensional_vectorSpan
direction_affineSpan
finiteDimensional_vectorSpan πŸ“–mathematicalCoplanarFiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Submodule.addCommGroup
Submodule.module
β€”IsNoetherian.iff_fg
IsNoetherian.iff_rank_lt_aleph0
lt_of_le_of_lt
Cardinal.lt_aleph0
finrank_le_two πŸ“–mathematicalCoplanarModule.finrank
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
β€”coplanar_iff_finrank_le_two
subset πŸ“–β€”Set
Set.instHasSubset
Coplanar
β€”β€”LE.le.trans
Submodule.rank_mono
vectorSpan_mono

(root)

Definitions

NameCategoryTheorems
Collinear πŸ“–MathDef
33 mathmath: collinear_singleton, affineIndependent_iff_not_collinear_set, EuclideanGeometry.oangle_sign_eq_zero_iff_collinear, collinear_insert_insert_insert_left_of_mem_affineSpan_pair, EuclideanGeometry.collinear_iff_of_two_zsmul_oangle_eq, Wbtw.collinear, collinear_iff_of_mem, EuclideanGeometry.Sphere.secondInter_collinear, collinear_pair, collinear_iff_not_affineIndependent_of_ne, collinear_insert_insert_insert_of_mem_affineSpan_pair, EuclideanGeometry.collinear_of_angle_eq_zero, collinear_iff_finrank_le_one, EuclideanGeometry.oangle_eq_zero_or_eq_pi_iff_collinear, EuclideanGeometry.collinear_iff_eq_or_eq_or_sin_eq_zero, EuclideanGeometry.cospherical_or_collinear_of_two_zsmul_oangle_eq, affineIndependent_iff_not_collinear_of_ne, collinear_iff_rank_le_one, collinear_insert_insert_of_mem_affineSpan_pair, collinear_triple_of_mem_affineSpan_pair, EuclideanGeometry.collinear_of_sin_eq_zero, Affine.Simplex.collinear_point_centroid_faceOppositeCentroid, EuclideanGeometry.collinear_of_angle_eq_pi, EuclideanGeometry.oangle_ne_zero_and_ne_pi_iff_not_collinear, EuclideanGeometry.collinear_iff_eq_or_eq_or_angle_eq_zero_or_angle_eq_pi, collinear_insert_of_mem_affineSpan_pair, affineIndependent_iff_not_collinear, collinear_iff_not_affineIndependent_set, collinear_insert_iff_of_mem_affineSpan, collinear_iff_exists_forall_eq_smul_vadd, EuclideanGeometry.concyclic_or_collinear_of_two_zsmul_oangle_eq, collinear_iff_not_affineIndependent, collinear_empty
Coplanar πŸ“–MathDef
11 mathmath: coplanar_empty, coplanar_of_fact_finrank_eq_two, Collinear.coplanar_insert, EuclideanGeometry.Concyclic.Coplanar, coplanar_pair, coplanar_of_finrank_eq_two, Collinear.coplanar, coplanar_triple, coplanar_iff_finrank_le_two, coplanar_insert_iff_of_mem_affineSpan, coplanar_singleton

Theorems

NameKindAssumesProvesValidatesDepends On
affineIndependent_iff_affineIndependent_collinear_ne πŸ“–mathematicalCollinear
Set
Set.instInsert
Set.instSingletonSet
AffineIndependent
DivisionRing.toRing
Matrix.vecCons
Matrix.vecEmpty
β€”affineIndependent_of_affineIndependent_collinear_ne
Set.ext
affineIndependent_iff_finrank_vectorSpan_eq πŸ“–mathematicalFintype.cardAffineIndependent
DivisionRing.toRing
Module.finrank
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set.range
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
β€”IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instNoMaxOrder
Nat.instCanonicallyOrderedAdd
affineIndependent_iff_linearIndependent_vsub
linearIndependent_iff_card_eq_finrank_span
IsNoetherianRing.orzechProperty
PrincipalIdealRing.isNoetherianRing
DivisionSemiring.isPrincipalIdealRing
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
vectorSpan_range_eq_span_range_vsub_right_ne
Set.finrank.eq_1
Fintype.subtype_card
Finset.filter_ne'
Finset.card_erase_of_mem
Finset.card_univ
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
affineIndependent_iff_le_finrank_vectorSpan πŸ“–mathematicalFintype.cardAffineIndependent
DivisionRing.toRing
Module.finrank
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set.range
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
β€”affineIndependent_iff_finrank_vectorSpan_eq
le_refl
le_antisymm
finrank_vectorSpan_range_le
affineIndependent_iff_not_collinear πŸ“–mathematicalβ€”AffineIndependent
DivisionRing.toRing
Collinear
Set.range
β€”collinear_iff_finrank_le_one
finiteDimensional_vectorSpan_range
Finite.of_fintype
affineIndependent_iff_not_finrank_vectorSpan_le
Fintype.card_fin
affineIndependent_iff_not_collinear_of_ne πŸ“–mathematicalβ€”AffineIndependent
DivisionRing.toRing
Collinear
Set
Set.instInsert
Set.instSingletonSet
β€”affineIndependent_iff_not_collinear
Set.image_univ
Finset.coe_univ
Finset.coe_insert
Finset.coe_singleton
Set.image_insert_eq
Set.image_pair
affineIndependent_iff_not_collinear_set πŸ“–mathematicalβ€”AffineIndependent
DivisionRing.toRing
Matrix.vecCons
Matrix.vecEmpty
Collinear
Set
Set.instInsert
Set.instSingletonSet
β€”affineIndependent_iff_not_collinear
Matrix.range_cons
Matrix.range_empty
Set.instLawfulSingleton
affineIndependent_iff_not_finrank_vectorSpan_le πŸ“–mathematicalFintype.cardAffineIndependent
DivisionRing.toRing
Module.finrank
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set.range
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
β€”affineIndependent_iff_le_finrank_vectorSpan
lt_iff_not_ge
affineIndependent_of_affineIndependent_collinear_ne πŸ“–β€”AffineIndependent
DivisionRing.toRing
Matrix.vecCons
Matrix.vecEmpty
Collinear
Set
Set.instInsert
Set.instSingletonSet
β€”β€”affineIndependent_iff_not_collinear_set
collinear_insert_insert_of_mem_affineSpan_pair
Collinear.mem_affineSpan_of_mem_of_ne
Collinear.subset
collinear_empty πŸ“–mathematicalβ€”Collinear
Set
Set.instEmptyCollection
β€”collinear_iff_rank_le_one
vectorSpan_empty
rank_subsingleton'
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Unique.instSubsingleton
Cardinal.canonicallyOrderedAdd
collinear_iff_exists_forall_eq_smul_vadd πŸ“–mathematicalβ€”Collinear
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”Set.eq_empty_or_nonempty
instIsEmptyFalse
AddTorsor.nonempty
collinear_iff_of_mem
vadd_vadd
sub_add_cancel
collinear_iff_finrank_le_one πŸ“–mathematicalβ€”Collinear
Module.finrank
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
β€”collinear_iff_rank_le_one
Nat.cast_one
Cardinal.addLeftMono
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
Cardinal.instCharZero
Module.finrank_eq_rank
IsNoetherianRing.strongRankCondition
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
PrincipalIdealRing.isNoetherianRing
DivisionSemiring.isPrincipalIdealRing
collinear_iff_not_affineIndependent πŸ“–mathematicalβ€”Collinear
Set.range
AffineIndependent
DivisionRing.toRing
β€”collinear_iff_finrank_le_one
finiteDimensional_vectorSpan_range
Finite.of_fintype
finrank_vectorSpan_le_iff_not_affineIndependent
Fintype.card_fin
collinear_iff_not_affineIndependent_of_ne πŸ“–mathematicalβ€”Collinear
Set
Set.instInsert
Set.instSingletonSet
AffineIndependent
DivisionRing.toRing
β€”Iff.not_left
affineIndependent_iff_not_collinear_of_ne
collinear_iff_not_affineIndependent_set πŸ“–mathematicalβ€”Collinear
Set
Set.instInsert
Set.instSingletonSet
AffineIndependent
DivisionRing.toRing
Matrix.vecCons
Matrix.vecEmpty
β€”Iff.not_left
affineIndependent_iff_not_collinear_set
collinear_iff_of_mem πŸ“–mathematicalSet
Set.instMembership
Collinear
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”IsNoetherianRing.strongRankCondition
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
PrincipalIdealRing.isNoetherianRing
DivisionSemiring.isPrincipalIdealRing
Module.Free.of_divisionRing
vsub_mem_vectorSpan
eq_vadd_iff_vsub_eq
vectorSpan_eq_span_vsub_set_right
Submodule.span_le
Set.subset_def
SetLike.mem_coe
Submodule.mem_span_singleton
Set.mem_image
vadd_vsub
SetLike.le_def
instIsConcreteLE
collinear_iff_rank_le_one πŸ“–mathematicalβ€”Collinear
Cardinal
Cardinal.instLE
Module.rank
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
Cardinal.instOne
β€”β€”
collinear_insert_iff_of_mem_affineSpan πŸ“–mathematicalAffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Collinear
Set
Set.instInsert
β€”Collinear.eq_1
vectorSpan_insert_eq_vectorSpan
collinear_insert_insert_insert_left_of_mem_affineSpan_pair πŸ“–mathematicalAffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
Collinearβ€”Collinear.subset
Set.insert_subset_insert
collinear_insert_insert_insert_of_mem_affineSpan_pair
collinear_insert_insert_insert_of_mem_affineSpan_pair πŸ“–mathematicalAffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
Collinearβ€”collinear_insert_iff_of_mem_affineSpan
AffineSubspace.le_def'
affineSpan_mono
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_insert
collinear_pair
collinear_insert_insert_of_mem_affineSpan_pair πŸ“–mathematicalAffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
Collinearβ€”collinear_insert_iff_of_mem_affineSpan
AffineSubspace.le_def'
affineSpan_mono
Set.subset_insert
collinear_pair
collinear_insert_of_mem_affineSpan_pair πŸ“–mathematicalAffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
Collinearβ€”collinear_insert_iff_of_mem_affineSpan
collinear_pair
collinear_pair πŸ“–mathematicalβ€”Collinear
Set
Set.instInsert
Set.instSingletonSet
β€”collinear_iff_exists_forall_eq_smul_vadd
Set.mem_singleton_iff
Set.mem_insert_iff
zero_smul
zero_vadd
one_smul
vsub_vadd
collinear_singleton πŸ“–mathematicalβ€”Collinear
Set
Set.instSingletonSet
β€”collinear_iff_rank_le_one
vectorSpan_singleton
rank_subsingleton'
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Unique.instSubsingleton
Cardinal.canonicallyOrderedAdd
collinear_triple_of_mem_affineSpan_pair πŸ“–mathematicalAffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
Collinearβ€”Collinear.subset
Set.insert_subset_insert
collinear_insert_insert_insert_left_of_mem_affineSpan_pair
coplanar_empty πŸ“–mathematicalβ€”Coplanar
Set
Set.instEmptyCollection
β€”Collinear.coplanar
collinear_empty
coplanar_iff_finrank_le_two πŸ“–mathematicalβ€”Coplanar
Module.finrank
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
β€”Nat.instAtLeastTwoHAddOfNat
Cardinal.addLeftMono
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
Cardinal.instCharZero
Module.finrank_eq_rank
IsNoetherianRing.strongRankCondition
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
PrincipalIdealRing.isNoetherianRing
DivisionSemiring.isPrincipalIdealRing
coplanar_insert_iff_of_mem_affineSpan πŸ“–mathematicalAffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Coplanar
Set
Set.instInsert
β€”Coplanar.eq_1
vectorSpan_insert_eq_vectorSpan
coplanar_of_fact_finrank_eq_two πŸ“–mathematicalβ€”Coplanarβ€”coplanar_of_finrank_eq_two
Fact.out
coplanar_of_finrank_eq_two πŸ“–mathematicalModule.finrank
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Coplanarβ€”FiniteDimensional.of_finrank_eq_succ
coplanar_iff_finrank_le_two
FiniteDimensional.finiteDimensional_submodule
Submodule.finrank_le
IsNoetherianRing.strongRankCondition
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
PrincipalIdealRing.isNoetherianRing
DivisionSemiring.isPrincipalIdealRing
coplanar_pair πŸ“–mathematicalβ€”Coplanar
Set
Set.instInsert
Set.instSingletonSet
β€”Collinear.coplanar
collinear_pair
coplanar_singleton πŸ“–mathematicalβ€”Coplanar
Set
Set.instSingletonSet
β€”Collinear.coplanar
collinear_singleton
coplanar_triple πŸ“–mathematicalβ€”Coplanar
Set
Set.instInsert
Set.instSingletonSet
β€”Collinear.coplanar_insert
collinear_pair
finiteDimensional_direction_affineSpan_image_of_finite πŸ“–mathematicalβ€”FiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
AffineSubspace.direction
affineSpan
Set.image
Submodule.addCommGroup
Submodule.module
β€”finiteDimensional_direction_affineSpan_of_finite
Set.toFinite
Finite.Set.finite_image
Subtype.finite
finiteDimensional_direction_affineSpan_insert πŸ“–mathematicalβ€”FiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
AffineSubspace.direction
affineSpan
Set
Set.instInsert
SetLike.coe
AffineSubspace
AffineSubspace.instSetLike
Submodule.addCommGroup
Submodule.module
β€”finiteDimensional_vectorSpan_insert
direction_affineSpan
finiteDimensional_direction_affineSpan_insert_set πŸ“–mathematicalβ€”FiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
AffineSubspace.direction
affineSpan
Set
Set.instInsert
Submodule.addCommGroup
Submodule.module
β€”direction_affineSpan
finiteDimensional_vectorSpan_insert_set
finiteDimensional_direction_affineSpan_of_finite πŸ“–mathematicalβ€”FiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
AffineSubspace.direction
affineSpan
Submodule.addCommGroup
Submodule.module
β€”finiteDimensional_vectorSpan_of_finite
direction_affineSpan
finiteDimensional_direction_affineSpan_range πŸ“–mathematicalβ€”FiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
AffineSubspace.direction
affineSpan
Set.range
Submodule.addCommGroup
Submodule.module
β€”finiteDimensional_direction_affineSpan_of_finite
Set.finite_range
finiteDimensional_direction_affineSpan_singleton πŸ“–mathematicalβ€”FiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
AffineSubspace.direction
affineSpan
Set
Set.instSingletonSet
Submodule.addCommGroup
Submodule.module
β€”direction_affineSpan
finiteDimensional_vectorSpan_singleton
finiteDimensional_direction_map πŸ“–mathematicalβ€”FiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
AffineSubspace.direction
AffineSubspace.map
Submodule.addCommGroup
Submodule.module
β€”RingHomSurjective.ids
AffineSubspace.map_direction
FiniteDimensional.instSubtypeMemSubmoduleMap
finiteDimensional_vectorSpan_image_of_finite πŸ“–mathematicalβ€”FiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set.image
Submodule.addCommGroup
Submodule.module
β€”finiteDimensional_vectorSpan_of_finite
Set.toFinite
Finite.Set.finite_image
Subtype.finite
finiteDimensional_vectorSpan_insert πŸ“–mathematicalβ€”FiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set
Set.instInsert
SetLike.coe
AffineSubspace
AffineSubspace.instSetLike
Submodule.addCommGroup
Submodule.module
β€”direction_affineSpan
affineSpan_insert_affineSpan
Set.eq_empty_or_nonempty
AffineSubspace.coe_eq_bot_iff
AffineSubspace.bot_coe
AffineSubspace.span_empty
Set.instLawfulSingleton
vectorSpan_singleton
finiteDimensional_bot
AffineSubspace.affineSpan_coe
AffineSubspace.direction_affineSpan_insert
Submodule.finiteDimensional_sup
FiniteDimensional.span_singleton
finiteDimensional_vectorSpan_insert_set πŸ“–mathematicalβ€”FiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set
Set.instInsert
Submodule.addCommGroup
Submodule.module
β€”direction_affineSpan
affineSpan_insert_affineSpan
finiteDimensional_vectorSpan_insert
finiteDimensional_vectorSpan_of_finite πŸ“–mathematicalβ€”FiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Submodule.addCommGroup
Submodule.module
β€”FiniteDimensional.span_of_finite
Set.Finite.vsub
finiteDimensional_vectorSpan_range πŸ“–mathematicalβ€”FiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set.range
Submodule.addCommGroup
Submodule.module
β€”finiteDimensional_vectorSpan_of_finite
Set.finite_range
finiteDimensional_vectorSpan_singleton πŸ“–mathematicalβ€”FiniteDimensional
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set
Set.instSingletonSet
Submodule.addCommGroup
Submodule.module
β€”finiteDimensional_vectorSpan_of_finite
Set.finite_singleton
finite_of_fin_dim_affineIndependent πŸ“–mathematicalAffineIndependent
DivisionRing.toRing
Finiteβ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Finite.of_subsingleton
Set.Finite.finite_of_compl
Nontrivial.to_nonempty
Set.finite_singleton
Set.finite_coe_iff
LinearIndependent.finite_of_isNoetherian
IsNoetherian.iff_fg
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
affineIndependent_iff_linearIndependent_vsub
finite_set_of_fin_dim_affineIndependent πŸ“–mathematicalAffineIndependent
DivisionRing.toRing
Set.Elem
Set.Finiteβ€”Set.toFinite
finite_of_fin_dim_affineIndependent
finrank_vectorSpan_image_finset_le πŸ“–mathematicalFinset.cardModule.finrank
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
SetLike.coe
Finset
Finset.instSetLike
Finset.image
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
β€”Finset.image_nonempty
Finset.card_pos
vectorSpan_eq_span_vsub_finset_right_ne
le_trans
finrank_span_finset_le_card
IsNoetherianRing.strongRankCondition
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
PrincipalIdealRing.isNoetherianRing
DivisionSemiring.isPrincipalIdealRing
Finset.card_image_of_injective
vsub_left_injective
Finset.card_erase_of_mem
tsub_le_iff_right
Nat.instOrderedSub
Finset.card_image_le
finrank_vectorSpan_insert_le πŸ“–mathematicalβ€”Module.finrank
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set
Set.instInsert
SetLike.coe
AffineSubspace
AffineSubspace.instSetLike
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
AffineSubspace.direction
β€”direction_affineSpan
affineSpan_insert_affineSpan
Set.eq_empty_or_nonempty
AffineSubspace.coe_eq_bot_iff
AffineSubspace.bot_coe
AffineSubspace.span_empty
AffineSubspace.direction_bot
finrank_bot
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
zero_add
Set.instLawfulSingleton
vectorSpan_singleton
zero_le_one'
Nat.instZeroLEOneClass
AffineSubspace.affineSpan_coe
AffineSubspace.direction_affineSpan_insert
add_comm
LE.le.trans
Submodule.finrank_add_le_finrank_add_finrank
FiniteDimensional.span_singleton
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
finrank_le_one
IsNoetherianRing.strongRankCondition
PrincipalIdealRing.isNoetherianRing
DivisionSemiring.isPrincipalIdealRing
Submodule.mem_span_singleton_self
Submodule.mem_span_singleton
vectorSpan_mono
Set.subset_insert
Submodule.finiteDimensional_of_le
Module.finrank_of_infinite_dimensional
zero_le_one
finrank_vectorSpan_insert_le_set πŸ“–mathematicalβ€”Module.finrank
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set
Set.instInsert
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
β€”direction_affineSpan
affineSpan_insert_affineSpan
finrank_vectorSpan_insert_le
finrank_vectorSpan_le_iff_not_affineIndependent πŸ“–mathematicalFintype.cardModule.finrank
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set.range
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
AffineIndependent
β€”not_iff_comm
affineIndependent_iff_not_finrank_vectorSpan_le
finrank_vectorSpan_range_add_one_le πŸ“–mathematicalβ€”Module.finrank
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set.range
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
Fintype.card
β€”le_tsub_iff_right
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Fintype.card_pos
finrank_vectorSpan_range_le
tsub_add_cancel_of_le
finrank_vectorSpan_range_le πŸ“–mathematicalFintype.cardModule.finrank
Submodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
vectorSpan
Set.range
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
β€”Set.image_univ
Finset.coe_univ
Finset.coe_image
finrank_vectorSpan_image_finset_le
Finset.card_univ
ne₁₂_of_not_collinear πŸ“–β€”Collinear
Set
Set.instInsert
Set.instSingletonSet
β€”β€”Set.insert_eq_of_mem
ne₁₃_of_not_collinear πŸ“–β€”Collinear
Set
Set.instInsert
Set.instSingletonSet
β€”β€”Set.insert_eq_of_mem
ne₂₃_of_not_collinear πŸ“–β€”Collinear
Set
Set.instInsert
Set.instSingletonSet
β€”β€”Set.insert_eq_of_mem

---

← Back to Index