midpoint 📖 | CompOp | 97 mathmath: vsub_midpoint, dist_midpoint_right, EuclideanGeometry.Sphere.isDiameter_iff_right_mem_and_midpoint_eq_center, AffineSubspace.mem_perpBisector_iff_inner_eq_zero', midpoint_add_self, dist_left_midpoint, midpoint_eq_right_iff, sbtw_midpoint_of_ne, nndist_midpoint_right, lineMap_inv_two, IsometryEquiv.midpoint_fixed, AffineIsometryEquiv.pointReflection_midpoint_left, EuclideanGeometry.dist_eq_iff_eq_smul_rotation_pi_div_two_vadd_midpoint, EuclideanGeometry.oangle_midpoint_right, AffineSubspace.mem_perpBisector_iff_inner_eq_zero, midpoint_pointReflection_left, dist_left_midpoint_eq_dist_right_midpoint, Equiv.pointReflection_midpoint_right, midpoint_eq_smul_add, midpoint_sub_right, EuclideanGeometry.oangle_midpoint_rev_left, EuclideanGeometry.Sphere.tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, midpoint_le_right, midpoint_eq_left_iff, dist_midpoint_midpoint_le, midpoint_le_midpoint, midpoint_comm, midpoint_pointReflection_right, dist_right_midpoint, AffineEquiv.map_midpoint, midpoint_self, IsometryEquiv.map_midpoint, nndist_left_midpoint, Affine.Triangle.circumsphere_eq_of_dist_of_oangle, Filter.Tendsto.midpoint, EuclideanGeometry.oangle_midpoint_left, nndist_midpoint_left, midpoint_add_sub, midpoint_neg_self, nndist_midpoint_midpoint_le', midpoint_le_left, midpoint_sub_add, EuclideanGeometry.Sphere.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, midpoint_vsub_left, Affine.Triangle.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_circumcenter, midpoint_vadd_midpoint, midpoint_eq_iff', Convex.midpoint_mem, AffineMap.map_midpoint, AffineEquiv.pointReflection_midpoint_right, homothety_invOf_two, midpoint_vsub_midpoint, right_eq_midpoint_iff, midpoint_vsub_right, pi_midpoint_apply, AffineSubspace.midpoint_mem_perpBisector, nndist_midpoint_midpoint_le, EuclideanGeometry.angle_left_midpoint_eq_pi_div_two_of_dist_eq, Affine.Triangle.eulerPoint_eq_midpoint, midpoint_eq_iff, Affine.Simplex.midpoint_faceOppositeCentroid_eulerPoint, EuclideanGeometry.Sphere.IsDiameter.midpoint_eq_center, EuclideanGeometry.oangle_midpoint_rev_right, lineMap_one_half, EuclideanGeometry.angle_midpoint_eq_pi, AffineEquiv.midpoint_pointReflection_left, left_le_midpoint, midpoint_mem_segment, midpoint_unique, midpoint_sub_left, midpoint_vsub, Equiv.pointReflection_midpoint_left, EuclideanGeometry.angle_right_midpoint_eq_pi_div_two_of_dist_eq, dist_midpoint_midpoint_le', right_le_midpoint, right_sub_midpoint, EuclideanGeometry.dist_sq_add_dist_sq_eq_two_mul_dist_midpoint_sq_add_half_dist_sq, AffineEquiv.pointReflection_midpoint_left, homothety_inv_two, dist_midpoint_left, midpoint_vsub_midpoint_same_left, right_vsub_midpoint, nndist_right_midpoint, midpoint_eq_midpoint_iff_vsub_eq_vsub, EuclideanGeometry.Sphere.isDiameter_iff_left_mem_and_midpoint_eq_center, wbtw_midpoint, eq_midpoint_of_dist_eq_half, midpoint_zero_add, midpoint_self_neg, homothety_one_half, left_eq_midpoint_iff, left_sub_midpoint, midpoint_vsub_midpoint_same_right, AffineIsometryEquiv.pointReflection_midpoint_right, left_vsub_midpoint, Urysohns.CU.lim_eq_midpoint, AffineEquiv.midpoint_pointReflection_right
|