Documentation Verification Report

Centroid

πŸ“ Source: Mathlib/LinearAlgebra/AffineSpace/Simplex/Centroid.lean

Statistics

MetricCount
Definitionscentroid, faceOppositeCentroid, medial, median
4
TheoremsaffineIndependent_points_update_centroid, affineSpan_range_medial, centroid_eq_affineCombination, centroid_eq_iff, centroid_eq_of_range_eq, centroid_eq_smul_sum_vsub_vadd, centroid_eq_smul_vsub_vadd_point, centroid_map, centroid_mem_affineSpan, centroid_mem_median, centroid_notMem_affineSpan_of_ne_univ, centroid_reindex, centroid_restrict, centroid_vsub_eq, centroid_vsub_faceOppositeCentroid_eq_smul_vsub, centroid_vsub_point_eq_smul_vsub, centroid_weighted_vsub_eq_zero, eq_centroid_iff_sum_vsub_eq_zero, eq_centroid_of_forall_mem_median, faceOppositeCentroid_eq_affineCombination, faceOppositeCentroid_eq_smul_vsub_vadd_point, faceOppositeCentroid_eq_sum_vsub_vadd, faceOppositeCentroid_map, faceOppositeCentroid_mem_affineSpan_face, faceOppositeCentroid_mem_median, faceOppositeCentroid_reindex, faceOppositeCentroid_restrict, faceOppositeCentroid_vsub_centroid_eq_smul_vsub, faceOppositeCentroid_vsub_faceOppositeCentroid, faceOppositeCentroid_vsub_point_eq_smul_sum_vsub, faceOppositeCentroid_vsub_point_eq_smul_vsub, face_centroid_eq_centroid, face_centroid_eq_iff, medial_map, medial_points, medial_reindex, medial_restrict, median_eq_line_point_centroid, median_map, median_reindex, median_restrict, point_mem_median, point_vsub_centroid_eq_smul_vsub, point_vsub_faceOppositeCentroid_eq_smul_sum_vsub, point_vsub_faceOppositeCentroid_eq_smul_vsub, smul_centroid_vsub_point_eq_smul_faceOppositeCentroid_vsub_point, smul_centroid_vsub_point_eq_sum_vsub, smul_faceOppositeCentroid_vsub_point_eq_sum_vsub, univ_centroid_eq
49
Total53

Affine.Simplex

Definitions

NameCategoryTheorems
centroid πŸ“–CompOp
31 mathmath: smul_centroid_vsub_point_eq_smul_faceOppositeCentroid_vsub_point, dist_point_faceOppositeCentroid, centroid_eq_smul_sum_vsub_vadd, Affine.Triangle.dist_point_faceOppositeCentroid, median_eq_line_point_centroid, univ_centroid_eq, affineIndependent_points_update_centroid, point_vsub_faceOppositeCentroid_eq_smul_vsub, centroid_weighted_vsub_eq_zero, centroid_map, centroid_notMem_affineSpan_of_ne_univ, dist_point_centroid, faceOppositeCentroid_vsub_point_eq_smul_vsub, centroid_eq_smul_vsub_vadd_point, centroid_vsub_faceOppositeCentroid_eq_smul_vsub, centroid_restrict, eq_centroid_iff_sum_vsub_eq_zero, collinear_point_centroid_faceOppositeCentroid, eq_centroid_of_forall_mem_median, centroid_eq_affineCombination, smul_centroid_vsub_point_eq_sum_vsub, point_vsub_centroid_eq_smul_vsub, centroid_mem_median, faceOppositeCentroid_eq_smul_vsub_vadd_point, faceOppositeCentroid_vsub_centroid_eq_smul_vsub, centroid_reindex, ninePointCircle_center, centroid_mem_affineSpan, centroid_vsub_point_eq_smul_vsub, centroid_vsub_eq, Affine.Triangle.dist_point_centroid
faceOppositeCentroid πŸ“–CompOp
29 mathmath: faceOppositeCentroid_mem_affineSpan_face, faceOppositeCentroid_vsub_point_eq_smul_sum_vsub, smul_centroid_vsub_point_eq_smul_faceOppositeCentroid_vsub_point, faceOppositeCentroid_restrict, dist_point_faceOppositeCentroid, Affine.Triangle.dist_point_faceOppositeCentroid, point_vsub_faceOppositeCentroid_eq_smul_vsub, smul_faceOppositeCentroid_vsub_point_eq_sum_vsub, dist_point_centroid, point_vsub_faceOppositeCentroid_eq_smul_sum_vsub, faceOppositeCentroid_vsub_point_eq_smul_vsub, faceOppositeCentroid_eq_sum_vsub_vadd, centroid_eq_smul_vsub_vadd_point, centroid_vsub_faceOppositeCentroid_eq_smul_vsub, faceOppositeCentroid_reindex, midpoint_faceOppositeCentroid_eulerPoint, medial_points, collinear_point_centroid_faceOppositeCentroid, faceOppositeCentroid_mem_median, faceOppositeCentroid_mem_ninePointCircle, point_vsub_centroid_eq_smul_vsub, faceOppositeCentroid_map, faceOppositeCentroid_eq_smul_vsub_vadd_point, faceOppositeCentroid_vsub_centroid_eq_smul_vsub, isDiameter_ninePointCircle, faceOppositeCentroid_vsub_faceOppositeCentroid, faceOppositeCentroid_eq_affineCombination, centroid_vsub_point_eq_smul_vsub, Affine.Triangle.dist_point_centroid
medial πŸ“–CompOp
6 mathmath: medial_reindex, medial_restrict, ninePointCircle_eq_circumsphere_medial, medial_points, affineSpan_range_medial, medial_map
median πŸ“–CompOp
7 mathmath: point_mem_median, median_eq_line_point_centroid, median_reindex, median_map, median_restrict, faceOppositeCentroid_mem_median, centroid_mem_median

Theorems

NameKindAssumesProvesValidatesDepends On
affineIndependent_points_update_centroid πŸ“–mathematicalβ€”AffineIndependent
DivisionRing.toRing
Function.update
points
centroid
β€”centroid_notMem_affineSpan_of_ne_univ
AffineIndependent.affineIndependent_update_of_notMem_affineSpan
independent
affineSpan_range_medial πŸ“–mathematicalβ€”affineSpan
DivisionRing.toRing
Set.range
points
medial
β€”mem_affineSpan
Set.mem_of_mem_of_subset
faceOppositeCentroid_mem_affineSpan_face
affineSpan_mono
range_faceOpposite_points
Set.preimage_range
AffineSubspace.eq_iff_direction_eq_of_mem
direction_affineSpan
Set.ext
neg_vsub_eq_vsub_rev
faceOppositeCentroid_vsub_faceOppositeCentroid
inv_neg
neg_smul
Submodule.span_smul_eq_of_isUnit
centroid_eq_affineCombination πŸ“–mathematicalβ€”centroid
DFunLike.coe
AffineMap
DivisionRing.toRing
Pi.addCommGroup
Ring.toAddCommGroup
Pi.Function.module
Ring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Semiring.toModule
Finset.instAddTorsorForall
AffineMap.instFunLike
Finset.affineCombination
Finset.univ
Fin.fintype
points
Finset.centroidWeights
β€”β€”
centroid_eq_iff πŸ“–mathematicalFinset.cardFinset.centroid
points
DivisionRing.toRing
β€”affineIndependent_iff_indicator_eq_of_affineCombination_eq
independent
Finset.sum_centroidWeightsIndicator_eq_one_of_card_eq_add_one
Finset.centroid_eq_affineCombination_fintype
Finset.ext
Nat.cast_one
Nat.cast_zero
Nat.cast_add
Set.indicator_of_mem
Set.indicator_of_notMem
Set.indicator_univ
Finset.coe_univ
centroid_eq_of_range_eq πŸ“–mathematicalSet.range
points
DivisionRing.toRing
Finset.centroid
Finset.univ
Fin.fintype
β€”Finset.centroid_eq_of_inj_on_of_image_eq
AffineIndependent.injective
DivisionRing.toNontrivial
independent
Finset.coe_univ
Set.image_univ
centroid_eq_smul_sum_vsub_vadd πŸ“–mathematicalβ€”centroid
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
Finset.sum
Finset.univ
Fin.fintype
VSub.vsub
AddTorsor.toVSub
points
β€”centroid_vsub_eq
vsub_vadd
centroid_eq_smul_vsub_vadd_point πŸ“–mathematicalβ€”centroid
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
VSub.vsub
AddTorsor.toVSub
faceOppositeCentroid
points
β€”centroid_vsub_point_eq_smul_vsub
vsub_vadd
centroid_map πŸ“–mathematicalDFunLike.coe
AffineMap
DivisionRing.toRing
AffineMap.instFunLike
centroid
map
β€”centroid.eq_1
map_points
centroid_eq_affineCombination
Finset.map_affineCombination
Finset.sum_centroidWeights_eq_one_of_card_ne_zero
Fintype.card_fin
Finset.centroid.eq_1
centroid_mem_affineSpan πŸ“–mathematicalβ€”AffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set.range
points
centroid
β€”centroid_mem_affineSpan_of_card_eq_add_one
Finset.card_fin
centroid_mem_median πŸ“–mathematicalβ€”AffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
median
centroid
β€”median.eq_1
eq_vadd_iff_vsub_eq
centroid_vsub_point_eq_smul_vsub
faceOppositeCentroid_vsub_point_eq_smul_vsub
smul_smul
one_div
mul_assoc
inv_mul_cancelβ‚€
Nat.cast_one
Nat.cast_zero
mul_one
smul_vsub_vadd_mem_affineSpan_pair
centroid_notMem_affineSpan_of_ne_univ πŸ“–mathematicalβ€”AffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set.image
points
centroid
β€”Set.exists_of_ssubset
Finset.sum_centroidWeights_eq_one_of_nonempty
AffineIndependent.eq_zero_of_affineCombination_mem_affineSpan
independent
centroid_eq_affineCombination
Fintype.card_fin
Nat.cast_add
Nat.cast_one
one_div
Nat.cast_zero
centroid_reindex πŸ“–mathematicalβ€”centroid
reindex
DivisionRing.toRing
β€”centroid.eq_1
centroid_eq_affineCombination
Fintype.card_fin
Fintype.card_eq
Finset.univ_map_embedding
Equiv.symm_comp_self
CompTriple.comp_eq
CompTriple.instComp_id
CompTriple.instIsIdId
Finset.affineCombination_map
centroid_restrict πŸ“–mathematicalAffineSubspace
DivisionRing.toRing
Preorder.toLE
PartialOrder.toPreorder
AffineSubspace.instPartialOrder
affineSpan
Set.range
points
SetLike.instMembership
AffineSubspace.instSetLike
centroid
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
AffineSubspace.direction
Submodule.addCommGroup
Submodule.module
AffineSubspace.toAddTorsor
Nonempty.map
DFunLike.coe
AffineMap
instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem
Set.instNonemptyRange
Set.Elem
SetLike.coe
Set.inclusion
AffineMap.instFunLike
AffineSubspace.inclusion
restrict
β€”Nonempty.map
instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem
Set.instNonemptyRange
centroid_map
centroid_vsub_eq πŸ“–mathematicalβ€”VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
centroid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
Finset.sum
Finset.univ
Fin.fintype
points
β€”Finset.centroid_vsub_const
Finset.centroid_def
Finset.affineCombination_eq_linear_combination
Finset.sum_centroidWeights_eq_one_of_nonempty
Finset.sum_congr
Fintype.card_fin
Nat.cast_add
Nat.cast_one
Finset.smul_sum
centroid_vsub_faceOppositeCentroid_eq_smul_vsub πŸ“–mathematicalβ€”VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
centroid
faceOppositeCentroid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
points
β€”point_vsub_centroid_eq_smul_vsub
smul_smul
inv_mul_cancelβ‚€
NeZero.charZero
one_smul
centroid_vsub_point_eq_smul_vsub πŸ“–mathematicalβ€”VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
centroid
points
DivisionRing.toRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
faceOppositeCentroid
β€”neg_vsub_eq_vsub_rev
point_vsub_centroid_eq_smul_vsub
neg_smul_neg
neg_smul
neg_neg
centroid_weighted_vsub_eq_zero πŸ“–mathematicalβ€”Finset.sum
AddCommGroup.toAddCommMonoid
Finset.univ
Fin.fintype
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
points
DivisionRing.toRing
centroid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”centroid_vsub_eq
smul_eq_zero_iff_right
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
DivisionRing.isDomain
GroupWithZero.toNoZeroSMulDivisors
IsDomain.toIsCancelMulZero
inv_ne_zero
Nat.cast_one
Nat.cast_zero
vsub_self
eq_centroid_iff_sum_vsub_eq_zero πŸ“–mathematicalβ€”centroid
Finset.sum
AddCommGroup.toAddCommMonoid
Finset.univ
Fin.fintype
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
points
DivisionRing.toRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”centroid_weighted_vsub_eq_zero
vsub_eq_zero_iff_eq
Finset.sum_congr
vsub_sub_vsub_cancel_right
Nat.cast_one
Nat.cast_smul_eq_nsmul
Finset.sum_const
Fintype.card_fin
zero_sub
Finset.sum_sub_distrib
smul_eq_zero_iff_right
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
DivisionRing.isDomain
GroupWithZero.toNoZeroSMulDivisors
IsDomain.toIsCancelMulZero
Nat.cast_zero
eq_centroid_of_forall_mem_median πŸ“–mathematicalAffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
median
centroidβ€”vsub_eq_zero_iff_eq
vsub_vadd
affineIndependent_points_update_centroid
affineIndependent_iff_linearIndependent_vsub
LinearIndependent.comp
Finset.card_compl
Fintype.card_fin
Finset.card_singleton
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finset.one_lt_card_iff
LinearIndependent.disjoint_span_image
Submodule.disjoint_def
faceOppositeCentroid_eq_affineCombination πŸ“–mathematicalβ€”faceOppositeCentroid
DFunLike.coe
AffineMap
DivisionRing.toRing
Pi.addCommGroup
Ring.toAddCommGroup
Pi.Function.module
Ring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Semiring.toModule
Finset.instAddTorsorForall
AffineMap.instFunLike
Finset.affineCombination
Compl.compl
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
points
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Finset.card_compl
Fintype.card_fin
Finset.card_singleton
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
face_centroid_eq_centroid
Finset.centroid_def
Finset.centroidWeights_eq_const
faceOppositeCentroid_eq_smul_vsub_vadd_point πŸ“–mathematicalβ€”faceOppositeCentroid
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
VSub.vsub
AddTorsor.toVSub
centroid
points
β€”centroid_vsub_point_eq_smul_vsub
eq_vadd_iff_vsub_eq
smul_smul
inv_mul_cancelβ‚€
NeZero.charZero
one_smul
faceOppositeCentroid_eq_sum_vsub_vadd πŸ“–mathematicalβ€”faceOppositeCentroid
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Finset.sum
Finset.univ
Fin.fintype
VSub.vsub
AddTorsor.toVSub
points
β€”faceOppositeCentroid_vsub_point_eq_smul_sum_vsub
vsub_vadd
faceOppositeCentroid_map πŸ“–mathematicalDFunLike.coe
AffineMap
DivisionRing.toRing
AffineMap.instFunLike
faceOppositeCentroid
map
β€”centroid_eq_affineCombination
Finset.map_affineCombination
Finset.sum_centroidWeights_eq_one_of_card_ne_zero
Fintype.card_fin
faceOppositeCentroid_mem_affineSpan_face πŸ“–mathematicalβ€”AffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set.range
points
faceOpposite
faceOppositeCentroid
β€”centroid_mem_affineSpan
faceOppositeCentroid_mem_median πŸ“–mathematicalβ€”AffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
median
faceOppositeCentroid
β€”β€”
faceOppositeCentroid_reindex πŸ“–mathematicalβ€”faceOppositeCentroid
reindex
DivisionRing.toRing
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”faceOppositeCentroid.eq_1
centroid_eq_of_range_eq
range_faceOpposite_reindex
Fintype.card_fin
Fintype.card_eq
faceOppositeCentroid_restrict πŸ“–mathematicalAffineSubspace
DivisionRing.toRing
Preorder.toLE
PartialOrder.toPreorder
AffineSubspace.instPartialOrder
affineSpan
Set.range
points
SetLike.instMembership
AffineSubspace.instSetLike
faceOppositeCentroid
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
AffineSubspace.direction
Submodule.addCommGroup
Submodule.module
AffineSubspace.toAddTorsor
Nonempty.map
DFunLike.coe
AffineMap
instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem
Set.instNonemptyRange
Set.Elem
SetLike.coe
Set.inclusion
AffineMap.instFunLike
AffineSubspace.inclusion
restrict
β€”Nonempty.map
instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem
Set.instNonemptyRange
faceOppositeCentroid_map
faceOppositeCentroid_vsub_centroid_eq_smul_vsub πŸ“–mathematicalβ€”VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
faceOppositeCentroid
centroid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
points
β€”centroid_vsub_point_eq_smul_vsub
smul_smul
inv_mul_cancelβ‚€
NeZero.charZero
one_smul
faceOppositeCentroid_vsub_faceOppositeCentroid πŸ“–mathematicalβ€”VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
faceOppositeCentroid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
points
β€”faceOppositeCentroid_eq_sum_vsub_vadd
vadd_vsub_vadd_comm
Finset.sum_congr
vsub_sub_vsub_cancel_right
Finset.sum_sub_distrib
smul_sub
sub_sub_sub_cancel_left
Finset.sum_const
Finset.card_univ
Fintype.card_fin
neg_vsub_eq_vsub_rev
sub_eq_add_neg
add_smul
sub_eq_iff_eq_add
one_smul
smul_add
add_comm
Nat.cast_smul_eq_nsmul
smul_smul
inv_eq_one_div
one_div_mul_cancel
NeZero.charZero
faceOppositeCentroid_vsub_point_eq_smul_sum_vsub πŸ“–mathematicalβ€”VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
faceOppositeCentroid
points
DivisionRing.toRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Finset.sum
Finset.univ
Fin.fintype
β€”faceOppositeCentroid_eq_affineCombination
Finset.affineCombination_eq_weightedVSubOfPoint_vadd_of_sum_eq_one
Finset.sum_const
Finset.card_compl
Fintype.card_fin
Finset.card_singleton
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
nsmul_eq_mul
mul_inv_cancelβ‚€
NeZero.charZero
Finset.weightedVSubOfPoint_apply
vadd_vsub
Finset.sum_compl_add_sum
Finset.sum_singleton
vsub_self
smul_zero
add_zero
Finset.smul_sum
faceOppositeCentroid_vsub_point_eq_smul_vsub πŸ“–mathematicalβ€”VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
faceOppositeCentroid
points
DivisionRing.toRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
centroid
β€”vsub_sub_vsub_cancel_right
faceOppositeCentroid_vsub_point_eq_smul_sum_vsub
centroid_vsub_eq
sub_smul
smul_smul
mul_sub
add_mul
Distrib.rightDistribClass
mul_inv_cancelβ‚€
NeZero.charZero
Nat.cast_one
Nat.cast_zero
one_mul
face_centroid_eq_centroid πŸ“–mathematicalFinset.cardFinset.centroid
Finset.univ
Fin.fintype
points
DivisionRing.toRing
face
β€”Finset.coe_map
Finset.coe_univ
Set.image_univ
Finset.range_orderEmbOfFin
Finset.centroid_map
face_centroid_eq_iff πŸ“–mathematicalFinset.cardFinset.centroid
Finset.univ
Fin.fintype
points
DivisionRing.toRing
face
β€”face_centroid_eq_centroid
centroid_eq_iff
medial_map πŸ“–mathematicalDFunLike.coe
AffineMap
DivisionRing.toRing
AffineMap.instFunLike
medial
map
β€”ext
faceOppositeCentroid_map
medial_points πŸ“–mathematicalβ€”points
DivisionRing.toRing
medial
faceOppositeCentroid
β€”β€”
medial_reindex πŸ“–mathematicalβ€”medial
reindex
DivisionRing.toRing
β€”ext
faceOppositeCentroid_reindex
medial_restrict πŸ“–mathematicalAffineSubspace
DivisionRing.toRing
Preorder.toLE
PartialOrder.toPreorder
AffineSubspace.instPartialOrder
affineSpan
Set.range
points
medial
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
AffineSubspace.direction
AffineSubspace.instSetLike
Submodule.addCommGroup
Submodule.module
AffineSubspace.toAddTorsor
Nonempty.map
DFunLike.coe
AffineMap
instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem
Set.instNonemptyRange
Set.Elem
SetLike.coe
Set.inclusion
AffineMap.instFunLike
AffineSubspace.inclusion
restrict
affineSpan_range_medial
β€”ext
Nonempty.map
instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem
Set.instNonemptyRange
affineSpan_range_medial
faceOppositeCentroid_restrict
median_eq_line_point_centroid πŸ“–mathematicalβ€”median
affineSpan
DivisionRing.toRing
Set
Set.instInsert
points
Set.instSingletonSet
centroid
β€”affineSpan_pair_le_of_right_mem
faceOppositeCentroid_eq_smul_vsub_vadd_point
neg_vsub_eq_vsub_rev
neg_smul
one_smul
smul_smul
mul_neg_one
inv_eq_one_div
neg_div
smul_vsub_rev_vadd_mem_affineSpan_pair
median.eq_1
centroid_mem_median
le_antisymm
median_map πŸ“–mathematicalDFunLike.coe
AffineMap
DivisionRing.toRing
AffineMap.instFunLike
median
map
AffineSubspace.map
β€”faceOppositeCentroid_map
AffineSubspace.map_span
Set.image_pair
median_reindex πŸ“–mathematicalβ€”median
reindex
DivisionRing.toRing
AffineSubspace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”AffineSubspace.ext
faceOppositeCentroid_reindex
median_restrict πŸ“–mathematicalAffineSubspace
DivisionRing.toRing
Preorder.toLE
PartialOrder.toPreorder
AffineSubspace.instPartialOrder
affineSpan
Set.range
points
AffineSubspace.map
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
AffineSubspace.direction
AffineSubspace.instSetLike
Submodule.addCommGroup
Submodule.module
AffineSubspace.toAddTorsor
Nonempty.map
DFunLike.coe
AffineMap
instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem
Set.instNonemptyRange
Set.Elem
SetLike.coe
Set.inclusion
AffineMap.instFunLike
AffineSubspace.inclusion
AffineSubspace.subtype
median
restrict
β€”Nonempty.map
instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem
Set.instNonemptyRange
AffineSubspace.map_span
Set.image_congr
Set.image_pair
faceOppositeCentroid_restrict
point_mem_median πŸ“–mathematicalβ€”AffineSubspace
DivisionRing.toRing
SetLike.instMembership
AffineSubspace.instSetLike
median
points
β€”β€”
point_vsub_centroid_eq_smul_vsub πŸ“–mathematicalβ€”VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
points
DivisionRing.toRing
centroid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
faceOppositeCentroid
β€”vsub_sub_vsub_cancel_right
faceOppositeCentroid_vsub_point_eq_smul_sum_vsub
centroid_vsub_eq
neg_vsub_eq_vsub_rev
sub_smul
smul_smul
neg_smul
mul_sub
neg_add_eq_sub
sub_eq_iff_eq_add
mul_inv_cancelβ‚€
NeZero.charZero
one_mul
add_mul
Distrib.rightDistribClass
Nat.cast_one
Nat.cast_zero
point_vsub_faceOppositeCentroid_eq_smul_sum_vsub πŸ“–mathematicalβ€”VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
points
DivisionRing.toRing
faceOppositeCentroid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Finset.sum
Finset.univ
Fin.fintype
β€”neg_vsub_eq_vsub_rev
faceOppositeCentroid_vsub_point_eq_smul_sum_vsub
neg_smul
smul_smul
Finset.smul_sum
Finset.sum_congr
one_smul
point_vsub_faceOppositeCentroid_eq_smul_vsub πŸ“–mathematicalβ€”VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
points
DivisionRing.toRing
faceOppositeCentroid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
centroid
β€”neg_vsub_eq_vsub_rev
faceOppositeCentroid_vsub_point_eq_smul_vsub
neg_smul
neg_smul_neg
neg_neg
smul_centroid_vsub_point_eq_smul_faceOppositeCentroid_vsub_point πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
VSub.vsub
AddTorsor.toVSub
centroid
points
faceOppositeCentroid
β€”smul_faceOppositeCentroid_vsub_point_eq_sum_vsub
smul_centroid_vsub_point_eq_sum_vsub
smul_centroid_vsub_point_eq_sum_vsub πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
VSub.vsub
AddTorsor.toVSub
centroid
points
Finset.sum
Finset.univ
Fin.fintype
β€”centroid_eq_smul_sum_vsub_vadd
vadd_vsub
smul_smul
mul_inv_cancelβ‚€
Nat.cast_one
Nat.cast_zero
one_smul
smul_faceOppositeCentroid_vsub_point_eq_sum_vsub πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
VSub.vsub
AddTorsor.toVSub
faceOppositeCentroid
points
Finset.sum
Finset.univ
Fin.fintype
β€”faceOppositeCentroid_eq_sum_vsub_vadd
vadd_vsub
smul_smul
mul_inv_cancelβ‚€
NeZero.charZero
one_smul
univ_centroid_eq πŸ“–mathematicalβ€”Finset.centroid
Finset.univ
Fin.fintype
points
DivisionRing.toRing
centroid
β€”β€”

---

← Back to Index