Documentation Verification Report

Slope

πŸ“ Source: Mathlib/LinearAlgebra/AffineSpace/Slope.lean

Statistics

MetricCount
Definitionsslope
1
Theoremsslope_comp, slope_nonpos, slope_comp, slope_nonneg, slope_neg, slope_pos, eq_of_slope_eq_zero, lineMap_slope_lineMap_slope_lineMap, lineMap_slope_slope_sub_div_sub, slope_comm, slope_def_field, slope_def_module, slope_eq_zero_iff, slope_fun_def, slope_fun_def_field, slope_neg, slope_neg_fun, slope_neg_iff_of_le, slope_nonneg_iff_of_le, slope_nonpos_iff_of_le, slope_pos_iff_of_le, slope_same, slope_sub_smul, slope_vadd_const, sub_div_sub_smul_slope_add_sub_div_sub_smul_slope, sub_smul_slope, sub_smul_slope_vadd
27
Total28

AffineMap

Theorems

NameKindAssumesProvesValidatesDepends On
slope_comp πŸ“–mathematicalβ€”slope
DFunLike.coe
AffineMap
DivisionRing.toRing
Field.toDivisionRing
instFunLike
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
linear
β€”LinearMap.map_smul
linearMap_vsub

AntitoneOn

Theorems

NameKindAssumesProvesValidatesDepends On
slope_nonpos πŸ“–mathematicalAntitoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Preorder.toLE
slope
addGroupIsAddTorsor
AddCommGroup.toAddGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”slope_neg
IsOrderedAddMonoid.toAddLeftMono
MonotoneOn.slope_nonneg
neg
covariant_swap_add_of_covariant_add

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
slope_comp πŸ“–mathematicalβ€”slope
addGroupIsAddTorsor
AddCommGroup.toAddGroup
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instFunLike
β€”AffineMap.slope_comp

MonotoneOn

Theorems

NameKindAssumesProvesValidatesDepends On
slope_nonneg πŸ“–mathematicalMonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Preorder.toLE
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
slope
addGroupIsAddTorsor
AddCommGroup.toAddGroup
β€”le_total
slope_nonneg_iff_of_le
slope_comm

StrictAntiOn

Theorems

NameKindAssumesProvesValidatesDepends On
slope_neg πŸ“–mathematicalStrictAntiOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Preorder.toLT
slope
addGroupIsAddTorsor
AddCommGroup.toAddGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”slope_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
StrictMonoOn.slope_pos
neg
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add

StrictMonoOn

Theorems

NameKindAssumesProvesValidatesDepends On
slope_pos πŸ“–mathematicalStrictMonoOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Preorder.toLT
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
slope
addGroupIsAddTorsor
AddCommGroup.toAddGroup
β€”lt_or_gt_of_ne
slope_pos_iff_of_le
LT.lt.le
slope_comm

(root)

Definitions

NameCategoryTheorems
slope πŸ“–CompOp
120 mathmath: MonotoneOn.intervalIntegral_slope_le, ConvexOn.le_slope_of_hasDerivAt, StrictConvexOn.slope_lt_leftDeriv, ConvexOn.rightDeriv_le_slope_of_mem_interior, ConvexOn.monotoneOn_slope_lt, HasDerivWithinAt.liminf_right_slope_le, StrictConvexOn.deriv_lt_slope, StrictConcaveOn.lt_slope_of_hasDerivAt, StrictConcaveOn.slope_lt_rightDeriv, StrictConvexOn.rightDeriv_lt_slope, MonotoneOn.slope_nonneg, lineMap_le_map_iff_slope_le_slope_right, AffineMap.slope_comp, StrictConcaveOn.slope_lt_derivWithin, exists_dist_slope_lt_pairwiseDisjoint_hasSum, slope_pos_iff_of_le, ConcaveOn.slope_le_of_hasDerivAt, dslope_eventuallyEq_slope_nhdsNE, StrictConvexOn.lt_slope_of_hasDerivAt, StrictConcaveOn.deriv_lt_slope, StrictConcaveOn.slope_lt_deriv, ConvexOn.slope_le_deriv, ConcaveOn.antitoneOn_slope_gt, map_lt_lineMap_iff_slope_lt_slope_right, StrictConcaveOn.lt_slope_of_hasDerivWithinAt_Iio, StrictConvexOn.slope_lt_deriv, hasDerivAtFilter_iff_tendsto_slope, hasDerivAt_iff_tendsto_slope_left_right, bddAbove_slope_gt_of_mem_interior, sub_smul_slope_vadd, ConcaveOn.slope_le_of_hasDerivWithinAt_Ioi, ConcaveOn.slope_anti, slope_neg_fun, slope_eq_zero_iff, MonotoneOn.intervalIntegrable_slope, ConvexOn.slope_le_leftDeriv, ConcaveOn.antitoneOn_slope_lt, slope_comm, ConvexOn.le_slope_of_hasDerivWithinAt_Ioi, map_lt_lineMap_iff_slope_lt_slope_left, StrictConcaveOn.slope_lt_of_hasDerivAt, eqOn_dslope_slope, slope_pos_iff, map_le_lineMap_iff_slope_le_slope_right, StrictConcaveOn.derivWithin_lt_slope, StrictConvexOn.slope_lt_derivWithin, ConvexOn.slope_le_of_hasDerivWithinAt, AntitoneOn.slope_nonpos, StrictConvexOn.slope_lt_of_hasDerivWithinAt_Iio, ConvexOn.slope_mono, ConcaveOn.le_slope_of_hasDerivWithinAt, dslope_of_ne, slope_def_field, slope_fun_def, LinearMap.slope_comp, ConcaveOn.slope_le_derivWithin, lineMap_lt_map_iff_slope_lt_slope, slope_neg, dslope_eventuallyEq_slope_of_ne, ConcaveOn.leftDeriv_le_slope, ConcaveOn.derivWithin_le_slope, ConvexOn.hasDerivWithinAt_sSup_slope_of_mem_interior, bddBelow_slope_lt_of_mem_interior, ConcaveOn.deriv_le_slope, HasDerivAt.tendsto_slope, lineMap_le_map_iff_slope_le_slope, ConcaveOn.slope_le_of_hasDerivWithinAt, slope_pos_iff_gt, ConcaveOn.le_slope_of_hasDerivWithinAt_Iio, StrictConvexOn.lt_slope_of_hasDerivWithinAt, HasDerivWithinAt.limsup_slope_le', StrictConcaveOn.slope_lt_of_hasDerivWithinAt, ConvexOn.derivWithin_le_slope, ConvexOn.leftDeriv_eq_sSup_slope_of_mem_interior, lineMap_lt_map_iff_slope_lt_slope_left, StrictConcaveOn.slope_lt_of_hasDerivWithinAt_Ioi, slope_vadd_const, IntervalIntegrable.intervalIntegrable_slope, StrictAntiOn.slope_neg, ConvexOn.hasDerivWithinAt_sInf_slope_of_mem_interior, map_le_lineMap_iff_slope_le_slope, exists_deriv_eq_slope', StrictConvexOn.lt_slope_of_hasDerivWithinAt_Ioi, slope_nonpos_iff_of_le, ConvexOn.slope_le_of_hasDerivAt, slope_sub_smul, ConvexOn.deriv_le_slope, ConvexOn.rightDeriv_le_slope, sub_smul_slope, StrictConcaveOn.lt_slope_of_hasDerivWithinAt, StrictConvexOn.derivWithin_lt_slope, StrictConvexOn.slope_lt_of_hasDerivWithinAt, ConcaveOn.slope_le_rightDeriv, ConvexOn.monotoneOn_slope_gt, ConvexOn.le_slope_of_hasDerivWithinAt, ConvexOn.slope_le_derivWithin, slope_neg_iff_of_le, slope_fun_def_field, map_le_lineMap_iff_slope_le_slope_left, map_lt_lineMap_iff_slope_lt_slope, slope_nonneg_iff_of_le, hasDerivAt_iff_tendsto_slope, lineMap_le_map_iff_slope_le_slope_left, lineMap_slope_lineMap_slope_lineMap, StrictConcaveOn.leftDeriv_lt_slope, hasDerivWithinAt_iff_tendsto_slope', lineMap_slope_slope_sub_div_sub, StrictMonoOn.slope_pos, hasDerivWithinAt_iff_tendsto_slope, ConcaveOn.slope_le_deriv, ConvexOn.slope_le_of_hasDerivWithinAt_Iio, lineMap_lt_map_iff_slope_lt_slope_right, ConcaveOn.le_slope_of_hasDerivAt, slope_def_module, slope_same, ConvexOn.rightDeriv_eq_sInf_slope_of_mem_interior, sub_div_sub_smul_slope_add_sub_div_sub_smul_slope, ConvexOn.slope_le_leftDeriv_of_mem_interior, HasDerivWithinAt.limsup_slope_le, StrictConvexOn.slope_lt_of_hasDerivAt

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_slope_eq_zero πŸ“–β€”slope
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”sub_smul_slope_vadd
smul_zero
zero_vadd
lineMap_slope_lineMap_slope_lineMap πŸ“–mathematicalβ€”DFunLike.coe
AffineMap
DivisionRing.toRing
Field.toDivisionRing
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddCommGroup.toAddGroup
AffineMap.instFunLike
AffineMap.lineMap
slope
β€”AffineMap.lineMap_same
slope_same
slope_comm
AffineMap.lineMap_apply_ring
eq_div_iff
sub_ne_zero
sub_mul
one_mul
mul_sub
sub_sub
sub_sub_cancel
lineMap_slope_slope_sub_div_sub
lineMap_slope_slope_sub_div_sub πŸ“–mathematicalβ€”DFunLike.coe
AffineMap
DivisionRing.toRing
Field.toDivisionRing
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddCommGroup.toAddGroup
AffineMap.instFunLike
AffineMap.lineMap
slope
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”AffineMap.lineMap_apply_module
sub_div_sub_smul_slope_add_sub_div_sub_smul_slope
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
sub_ne_zero
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
slope_comm πŸ“–mathematicalβ€”slopeβ€”slope.eq_1
neg_vsub_eq_vsub_rev
smul_neg
neg_smul
neg_inv
neg_sub
slope_def_field πŸ“–mathematicalβ€”slope
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Semiring.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”div_eq_inv_mul
slope_def_module πŸ“–mathematicalβ€”slope
addGroupIsAddTorsor
AddCommGroup.toAddGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
SubNegMonoid.toSub
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”β€”
slope_eq_zero_iff πŸ“–mathematicalβ€”slope
addGroupIsAddTorsor
AddCommGroup.toAddGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
Field.isDomain
GroupWithZero.toNoZeroSMulDivisors
IsDomain.toIsCancelMulZero
slope_fun_def πŸ“–mathematicalβ€”slope
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
SubNegMonoid.toSub
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
VSub.vsub
AddTorsor.toVSub
β€”β€”
slope_fun_def_field πŸ“–mathematicalβ€”slope
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Semiring.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”div_eq_inv_mul
slope_neg πŸ“–mathematicalβ€”slope
addGroupIsAddTorsor
AddCommGroup.toAddGroup
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”neg_sub_neg
neg_sub
slope_neg_fun πŸ“–mathematicalβ€”slope
addGroupIsAddTorsor
AddCommGroup.toAddGroup
Pi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”slope_neg
slope_neg_iff_of_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
slope
addGroupIsAddTorsor
AddCommGroup.toAddGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”slope_neg_fun
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
slope_pos_iff_of_le
slope_nonneg_iff_of_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
slope
addGroupIsAddTorsor
AddCommGroup.toAddGroup
β€”slope_same
smul_nonneg
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
vsub_eq_sub
one_smul
mul_inv_cancelβ‚€
sub_eq_zero
SemigroupAction.mul_smul
slope.eq_1
inv_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
slope_nonpos_iff_of_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
slope
addGroupIsAddTorsor
AddCommGroup.toAddGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”slope_neg_fun
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
slope_nonneg_iff_of_le
slope_pos_iff_of_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
slope
addGroupIsAddTorsor
AddCommGroup.toAddGroup
β€”slope_nonneg_iff_of_le
slope_same πŸ“–mathematicalβ€”slope
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”slope.eq_1
sub_self
inv_zero
zero_smul
slope_sub_smul πŸ“–mathematicalβ€”slope
addGroupIsAddTorsor
AddCommGroup.toAddGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”sub_self
zero_smul
sub_zero
inv_smul_smulβ‚€
sub_ne_zero
slope_vadd_const πŸ“–mathematicalβ€”slope
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
addGroupIsAddTorsor
β€”vadd_vsub_vadd_cancel_right
sub_div_sub_smul_slope_add_sub_div_sub_smul_slope πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Module.toDistribMulAction
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
SubNegMonoid.toSub
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
slope
β€”sub_self
zero_div
zero_smul
zero_add
div_zero
slope_same
smul_zero
div_self
sub_ne_zero
one_smul
add_zero
add_comm
div_eq_inv_mul
SemigroupAction.mul_smul
smul_inv_smulβ‚€
vsub_add_vsub_cancel
sub_smul_slope πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
slope
VSub.vsub
AddTorsor.toVSub
β€”eq_or_ne
sub_self
zero_smul
vsub_self
slope.eq_1
smul_inv_smulβ‚€
sub_ne_zero
sub_smul_slope_vadd πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
slope
β€”sub_smul_slope
vsub_vadd

---

← Back to Index