Documentation Verification Report

VectorSpace

πŸ“ Source: Mathlib/LinearAlgebra/Basis/VectorSpace.lean

Statistics

MetricCount
DefinitionsleftInverse, extend, extendLe, ofSpan, ofVectorSpace, ofVectorSpaceIndex, sumExtend, sumExtendIndex
8
Theoremsexists_extend, exists_extend_of_notMem, exists_leftInverse_of_injective, leftInverse_apply_of_inj, leftInverse_comp_of_inj, coe_extend, coe_extendLe, coe_ofSpan, coe_ofVectorSpace, exists_basis, extendLe_apply_self, extendLe_subset, extend_apply_self, ofSpan_apply_self, ofSpan_subset, linearIndependent, ofVectorSpace_apply_self, range_extend, range_extendLe, range_ofSpan, range_ofVectorSpace, subset_extend, subset_extendLe, of_divisionRing, complementedLattice, exists_isCompl, exists_le_ker_of_lt_top, exists_le_ker_of_notMem, card_fintype, atom_iff_nonzero_span, exists_basis_of_pairing_eq_zero, exists_basis_of_pairing_ne_zero, instIsAtomisticSubmodule, instNontrivialLinearMapId, nonzero_span_atom, quotient_prod_linearEquiv
36
Total44

LinearMap

Definitions

NameCategoryTheorems
leftInverse πŸ“–CompOp
2 mathmath: leftInverse_comp_of_inj, leftInverse_apply_of_inj

Theorems

NameKindAssumesProvesValidatesDepends On
exists_extend πŸ“–mathematicalβ€”comp
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.subtype
β€”RingHomCompTriple.ids
exists_leftInverse_of_injective
Submodule.ker_subtype
comp_assoc
comp_id
exists_extend_of_notMem πŸ“–mathematicalSubmodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
comp
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.subtype
DFunLike.coe
LinearMap
instFunLike
β€”RingHomCompTriple.ids
exists_extend
ext
Submodule.mem_sup_left
LinearPMap.supSpanSingleton_apply_mk_of_mem
Subtype.coe_eta
Submodule.mem_sup_right
Submodule.mem_span_singleton_self
LinearPMap.supSpanSingleton_apply_self
exists_leftInverse_of_injective πŸ“–mathematicalker
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
Bot.bot
Submodule
Submodule.instBot
comp
RingHomCompTriple.ids
id
β€”LinearIndependent.linearIndepOn_id
Module.Basis.linearIndependent
LinearIndepOn.image
Module.Basis.coe_ofVectorSpace
Subtype.range_coe_subtype
Module.Basis.range_ofVectorSpace
Set.subset_univ
LinearIndepOn.subset_extend
RingHomCompTriple.ids
RingHomInvPair.ids
AddMonoid.nat_smulCommClass'
Module.Basis.ext
Set.image_subset_iff
Module.Basis.extend_apply_self
Module.Basis.ofVectorSpace_apply_self
Module.Basis.constr_basis
Function.leftInverse_invFun
ker_eq_bot
leftInverse_apply_of_inj πŸ“–mathematicalker
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
Bot.bot
Submodule
Submodule.instBot
DFunLike.coe
LinearMap
instFunLike
leftInverse
β€”RingHomCompTriple.ids
ext_iff
leftInverse_comp_of_inj πŸ“–mathematicalker
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
Bot.bot
Submodule
Submodule.instBot
comp
RingHomCompTriple.ids
leftInverse
id
β€”RingHomCompTriple.ids
exists_leftInverse_of_injective
comp.congr_simp

Module.Basis

Definitions

NameCategoryTheorems
extend πŸ“–CompOp
3 mathmath: range_extend, extend_apply_self, coe_extend
extendLe πŸ“–CompOp
5 mathmath: coe_extendLe, extendLe_subset, range_extendLe, subset_extendLe, extendLe_apply_self
ofSpan πŸ“–CompOp
4 mathmath: ofSpan_subset, range_ofSpan, ofSpan_apply_self, coe_ofSpan
ofVectorSpace πŸ“–CompOp
4 mathmath: range_ofVectorSpace, FGModuleCat.FGModuleCatCoevaluation_apply_one, coe_ofVectorSpace, ofVectorSpace_apply_self
ofVectorSpaceIndex πŸ“–CompOp
9 mathmath: ofVectorSpaceIndex.linearIndependent, range_ofVectorSpace, IsNoetherian.range_finsetBasis, FGModuleCat.FGModuleCatCoevaluation_apply_one, coe_ofVectorSpace, IsNoetherian.coe_finsetBasisIndex, ofVectorSpace_apply_self, IsNoetherian.coeSort_finsetBasisIndex, finite_ofVectorSpaceIndex_of_rank_lt_aleph0
sumExtend πŸ“–CompOpβ€”
sumExtendIndex πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_extend πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
Module.Basis
Set.Elem
LinearIndepOn.extend
Set.univ
Set.subset_univ
instFunLike
extend
Set
Set.instMembership
β€”Set.subset_univ
extend_apply_self
coe_extendLe πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
Submodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Top.top
Submodule.instTop
Submodule.span
DFunLike.coe
Module.Basis
Set.Elem
LinearIndepOn.extend
instFunLike
extendLe
Set.instMembership
β€”extendLe_apply_self
coe_ofSpan πŸ“–mathematicalSubmodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Top.top
Submodule.instTop
Submodule.span
DFunLike.coe
Module.Basis
Set.Elem
LinearIndepOn.extend
Set
Set.instEmptyCollection
linearIndepOn_empty
Set.empty_subset
instFunLike
ofSpan
Set.instMembership
β€”linearIndepOn_empty
Set.empty_subset
ofSpan_apply_self
coe_ofVectorSpace πŸ“–mathematicalβ€”DFunLike.coe
Module.Basis
Set.Elem
ofVectorSpaceIndex
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
instFunLike
ofVectorSpace
Set
Set.instMembership
β€”ofVectorSpace_apply_self
exists_basis πŸ“–mathematicalβ€”Module.Basis
Set.Elem
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
β€”β€”
extendLe_apply_self πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
Submodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Top.top
Submodule.instTop
Submodule.span
DFunLike.coe
Module.Basis
Set.Elem
LinearIndepOn.extend
instFunLike
extendLe
Set.instMembership
β€”mk_apply
extendLe_subset πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
Submodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Top.top
Submodule.instTop
Submodule.span
Set.range
Set.Elem
LinearIndepOn.extend
DFunLike.coe
Module.Basis
instFunLike
extendLe
β€”LinearIndepOn.extend_subset
range_extendLe
extend_apply_self πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
Module.Basis
Set.Elem
LinearIndepOn.extend
Set.univ
Set.subset_univ
instFunLike
extend
Set
Set.instMembership
β€”Set.subset_univ
mk_apply
ofSpan_apply_self πŸ“–mathematicalSubmodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Top.top
Submodule.instTop
Submodule.span
DFunLike.coe
Module.Basis
Set.Elem
LinearIndepOn.extend
Set
Set.instEmptyCollection
linearIndepOn_empty
Set.empty_subset
instFunLike
ofSpan
Set.instMembership
β€”linearIndepOn_empty
Set.empty_subset
extendLe_apply_self
linearIndependent_empty
ofSpan_subset πŸ“–mathematicalSubmodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Top.top
Submodule.instTop
Submodule.span
Set
Set.instHasSubset
Set.range
Set.Elem
LinearIndepOn.extend
Set.instEmptyCollection
linearIndepOn_empty
Set.empty_subset
DFunLike.coe
Module.Basis
instFunLike
ofSpan
β€”extendLe_subset
linearIndependent_empty
Set.empty_subset
ofVectorSpace_apply_self πŸ“–mathematicalβ€”DFunLike.coe
Module.Basis
Set.Elem
ofVectorSpaceIndex
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
instFunLike
ofVectorSpace
Set
Set.instMembership
β€”mk_apply
Set.subset_univ
range_extend πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set.range
Set.Elem
LinearIndepOn.extend
Set.univ
Set.subset_univ
DFunLike.coe
Module.Basis
instFunLike
extend
β€”Set.subset_univ
coe_extend
Subtype.range_coe_subtype
Set.setOf_mem_eq
range_extendLe πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
Submodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Top.top
Submodule.instTop
Submodule.span
Set.range
Set.Elem
LinearIndepOn.extend
DFunLike.coe
Module.Basis
instFunLike
extendLe
β€”coe_extendLe
Subtype.range_coe_subtype
Set.setOf_mem_eq
range_ofSpan πŸ“–mathematicalSubmodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Top.top
Submodule.instTop
Submodule.span
Set.range
Set.Elem
LinearIndepOn.extend
Set
Set.instEmptyCollection
linearIndepOn_empty
Set.empty_subset
DFunLike.coe
Module.Basis
instFunLike
ofSpan
β€”linearIndepOn_empty
Set.empty_subset
coe_ofSpan
Subtype.range_coe_subtype
Set.setOf_mem_eq
range_ofVectorSpace πŸ“–mathematicalβ€”Set.range
Set.Elem
ofVectorSpaceIndex
DFunLike.coe
Module.Basis
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
instFunLike
ofVectorSpace
β€”range_extend
subset_extend πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
LinearIndepOn.extend
Set.univ
Set.subset_univ
β€”LinearIndepOn.subset_extend
Set.subset_univ
subset_extendLe πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
Submodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Top.top
Submodule.instTop
Submodule.span
Set.range
Set.Elem
LinearIndepOn.extend
DFunLike.coe
Module.Basis
instFunLike
extendLe
β€”LinearIndepOn.subset_extend
range_extendLe

Module.Basis.ofVectorSpaceIndex

Theorems

NameKindAssumesProvesValidatesDepends On
linearIndependent πŸ“–mathematicalβ€”LinearIndependent
Set
Set.instMembership
Module.Basis.ofVectorSpaceIndex
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
β€”Module.Basis.ofVectorSpace_apply_self
Module.Basis.linearIndependent

Module.Free

Theorems

NameKindAssumesProvesValidatesDepends On
of_divisionRing πŸ“–mathematicalβ€”Module.Free
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
β€”of_basis

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
complementedLattice πŸ“–mathematicalβ€”ComplementedLattice
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
CompleteLattice.toBoundedOrder
β€”exists_isCompl
exists_isCompl πŸ“–mathematicalβ€”IsCompl
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
instPartialOrder
CompleteLattice.toBoundedOrder
completeLattice
β€”LinearMap.isCompl_of_proj
ker_subtype
exists_le_ker_of_lt_top πŸ“–mathematicalSubmodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Top.top
instTop
Preorder.toLE
LinearMap.ker
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
Semiring.toModule
RingHom.id
Semiring.toNonAssocSemiring
β€”SetLike.exists_of_lt
instIsConcreteLE
exists_le_ker_of_notMem
exists_le_ker_of_notMem πŸ“–mathematicalSubmodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearMap.ker
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
Semiring.toModule
RingHom.id
Semiring.toNonAssocSemiring
β€”RingHomCompTriple.ids
LinearMap.exists_extend_of_notMem
NeZero.one
DivisionRing.toNontrivial

VectorSpace

Theorems

NameKindAssumesProvesValidatesDepends On
card_fintype πŸ“–mathematicalβ€”Fintype.card
Monoid.toNatPow
Nat.instMonoid
β€”Module.card_fintype

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
atom_iff_nonzero_span πŸ“–mathematicalβ€”IsAtom
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.instOrderBot
Submodule.span
Set
Set.instSingletonSet
β€”Submodule.ne_bot_iff
lt_iff_le_and_ne
Submodule.span_singleton_eq_bot
Submodule.span_singleton_le_iff_mem
nonzero_span_atom
exists_basis_of_pairing_eq_zero πŸ“–mathematicalDFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Semiring.toModule
LinearMap.instFunLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Module.Basis
Set.Elem
Module.Basis.instFunLike
Module.Basis.coord
β€”CanLift.prf
Subtype.canLift
Field.isDomain
Submodule.instIsTorsionFree
DivisionSemiring.to_moduleIsTorsionFree
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
Set.subset_univ
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
inv_mul_cancelβ‚€
RingHomSurjective.ids
Submodule.span_image
Submodule.map.congr_simp
Module.Basis.span_eq
Submodule.map_top
Submodule.range_subtype
Module.Basis.coe_extend
Subtype.range_coe_subtype
LinearIndepOn.subset_extend
LinearIndepOn.id_insert
LinearIndepOn.image
LinearIndependent.linearIndepOn_id
Module.Basis.linearIndependent
Submodule.ker_subtype
NeZero.one
DivisionRing.toNontrivial
neg_smul
map_add
SemilinearMapClass.toAddHomClass
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
mul_one
add_neg_cancel
LinearMap.map_coe_ker
Module.Basis.ext
RingHomInvPair.ids
Module.Basis.coord_apply
Module.Basis.repr_self
Module.Basis.mk_apply
Finsupp.single_eq_same
Finsupp.single_eq_of_ne'
exists_basis_of_pairing_ne_zero πŸ“–mathematicalβ€”DFunLike.coe
Module.Basis
Set.Elem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Module.Basis.instFunLike
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instSMul
instDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.to_smulCommClass
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
LinearMap.instFunLike
Module.Basis.coord
β€”RingHomSurjective.ids
Submodule.span_image
Submodule.map.congr_simp
Module.Basis.span_eq
Submodule.map_top
Submodule.range_subtype
LinearIndepOn.id_insert
LinearIndepOn.image
LinearIndependent.linearIndepOn_id
Module.Basis.linearIndependent
Submodule.ker_subtype
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
neg_div
neg_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
mul_neg
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Subtype.range_coe_subtype
Set.mem_insert
Algebra.to_smulCommClass
Module.Basis.ext
RingHomInvPair.ids
Module.Basis.repr_self
Finsupp.single_eq_same
LinearMap.mem_ker
Submodule.subset_span
Set.mem_insert_iff
Subtype.prop
Finsupp.single_eq_of_ne
MulZeroClass.mul_zero
instIsAtomisticSubmodule πŸ“–mathematicalβ€”IsAtomistic
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
Submodule.instOrderBot
β€”CompleteLattice.isAtomistic_iff
Submodule.submodule_eq_sSup_le_nonzero_spans
nonzero_span_atom
instNontrivialLinearMapId πŸ“–mathematicalβ€”Nontrivial
LinearMap
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
β€”exists_ne
RingHomCompTriple.ids
LinearMap.exists_extend_of_notMem
DFunLike.ne_iff
nonzero_span_atom πŸ“–mathematicalβ€”IsAtom
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.instOrderBot
Submodule.span
Set
Set.instSingletonSet
β€”Submodule.ne_bot_iff
Submodule.mem_span_singleton_self
Submodule.mem_span_singleton
eq_or_ne
zero_smul
Submodule.smul_mem_iff
IsScalarTower.left
quotient_prod_linearEquiv πŸ“–mathematicalβ€”LinearEquiv
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
DivisionRing.toRing
SetLike.instMembership
Submodule.setLike
Prod.instAddCommMonoid
Submodule.Quotient.addCommGroup
Submodule.addCommMonoid
Prod.instModule
Submodule.Quotient.module
Submodule.module
β€”RingHomInvPair.ids
Submodule.exists_isCompl
RingHomCompTriple.ids
IsCompl.symm

---

← Back to Index