Documentation Verification Report

Orthogonal

πŸ“ Source: Mathlib/LinearAlgebra/BilinearForm/Orthogonal.lean

Statistics

MetricCount
DefinitionsIsOrtho, iIsOrtho, orthogonal
3
Theoremsortho_comm, ortho_comm, ortho_comm, eq_top_of_restrict_nondegenerate_of_orthogonal_eq_bot, finrank_add_finrank_orthogonal, finrank_orthogonal, nondegenerate_iff_not_isOrtho_basis_self, not_isOrtho_basis_self_of_nondegenerate, iIsOrtho_def, inf_orthogonal_self_le_ker_restrict, isCompl_orthogonal_iff_disjoint, isCompl_orthogonal_of_restrict_nondegenerate, isCompl_span_singleton_orthogonal, isOrtho_def, isOrtho_smul_left, isOrtho_smul_right, isOrtho_zero_left, isOrtho_zero_right, ker_restrict_eq_of_codisjoint, le_orthogonal_orthogonal, linearIndependent_of_iIsOrtho, mem_orthogonal_iff, ne_zero_of_not_isOrtho_self, nondegenerate_restrict_of_disjoint_orthogonal, orthogonal_bot, orthogonal_eq_bot_iff, orthogonal_eq_top_iff, orthogonal_le, orthogonal_orthogonal, orthogonal_span_singleton_eq_toLin_ker, orthogonal_top_eq_bot, orthogonal_top_eq_ker, restrict_nondegenerate_iff_isCompl_orthogonal, restrict_nondegenerate_orthogonal_spanSingleton, span_singleton_inf_orthogonal_eq_bot, span_singleton_sup_orthogonal_eq_top, toLin_restrict_ker_eq_inf_orthogonal, toLin_restrict_range_dualCoannihilator_eq_orthogonal
38
Total41

LinearMap.BilinForm

Definitions

NameCategoryTheorems
IsOrtho πŸ“–MathDef
11 mathmath: isOrtho_smul_right, IsAlt.ortho_comm, IsRefl.ortho_comm, isOrtho_smul_left, isOrtho_zero_right, isOrtho_zero_left, mem_orthogonal_iff, IsSymm.ortho_comm, isOrtho_def, iIsOrtho.not_isOrtho_basis_self_of_nondegenerate, iIsOrtho.nondegenerate_iff_not_isOrtho_basis_self
iIsOrtho πŸ“–MathDef
1 mathmath: iIsOrtho_def
orthogonal πŸ“–CompOp
27 mathmath: restrict_nondegenerate_iff_isCompl_orthogonal, restrict_nondegenerate_orthogonal_spanSingleton, span_singleton_inf_orthogonal_eq_bot, isCompl_orthogonal_iff_disjoint, orthogonal_eq_bot_iff, inf_orthogonal_self_le_ker_restrict, RootPairing.orthogonal_corootSpan_eq, orthogonal_span_singleton_eq_toLin_ker, finrank_orthogonal, mem_orthogonal_iff, LieAlgebra.IsKilling.orthogonal_span_coroot_eq_ker, orthogonal_top_eq_ker, le_orthogonal_orthogonal, orthogonal_bot, LieAlgebra.InvariantForm.orthogonal_toSubmodule, orthogonal_le, orthogonal_orthogonal, orthogonal_eq_top_iff, toLin_restrict_ker_eq_inf_orthogonal, orthogonal_top_eq_bot, LieIdeal.toSubmodule_killingCompl, toLin_restrict_range_dualCoannihilator_eq_orthogonal, finrank_add_finrank_orthogonal, isCompl_orthogonal_of_restrict_nondegenerate, RootPairing.orthogonal_rootSpan_eq, isCompl_span_singleton_orthogonal, span_singleton_sup_orthogonal_eq_top

Theorems

NameKindAssumesProvesValidatesDepends On
eq_top_of_restrict_nondegenerate_of_orthogonal_eq_bot πŸ“–mathematicalIsRefl
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Nondegenerate
Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
restrict
orthogonal
Bot.bot
Submodule.instBot
Top.top
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Submodule.instTop
β€”IsCompl.sup_eq_top
isCompl_orthogonal_of_restrict_nondegenerate
sup_bot_eq
finrank_add_finrank_orthogonal πŸ“–mathematicalIsRefl
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Module.finrank
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
CommSemiring.toSemiring
orthogonal
Subspace
Field.toDivisionRing
DivisionRing.toDivisionSemiring
Submodule.instMin
Top.top
Submodule.instTop
β€”RingHomSurjective.ids
toLin_restrict_ker_eq_inf_orthogonal
toLin_restrict_range_dualCoannihilator_eq_orthogonal
Submodule.finrank_map_subtype_eq
Algebra.to_smulCommClass
Subspace.finrank_add_finrank_dualCoannihilator_eq
add_comm
add_assoc
LinearMap.finrank_range_add_finrank_ker
FiniteDimensional.finiteDimensional_submodule
finrank_orthogonal πŸ“–mathematicalNondegenerate
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
IsRefl
Module.finrank
Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
orthogonal
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Submodule.addCommMonoid
Submodule.module
β€”finrank_add_finrank_orthogonal
add_zero
finrank_bot
IsLocalRing.toNontrivial
Field.instIsLocalRing
inf_bot_eq
orthogonal_top_eq_bot
iIsOrtho_def πŸ“–mathematicalβ€”iIsOrtho
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
inf_orthogonal_self_le_ker_restrict πŸ“–mathematicalIsReflSubmodule
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.instMin
orthogonal
Submodule.map
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Submodule.subtype
LinearMap.ker
LinearMap
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.addCommMonoid
LinearMap.module
restrict
β€”RingHomSurjective.ids
LinearMap.ext
isCompl_orthogonal_iff_disjoint πŸ“–mathematicalIsRefl
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
IsCompl
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
orthogonal
Disjoint
Submodule.instOrderBot
β€”IsCompl.disjoint
codisjoint_iff
Submodule.eq_top_of_finrank_eq
LE.le.antisymm
Submodule.finrank_le
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
le_self_add
Nat.instCanonicallyOrderedAdd
Submodule.finrank_sup_add_finrank_inf_eq
FiniteDimensional.finiteDimensional_submodule
finrank_add_finrank_orthogonal
le_refl
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Submodule.finiteDimensional_inf_right
Disjoint.eq_bot
isCompl_orthogonal_of_restrict_nondegenerate πŸ“–mathematicalIsRefl
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Nondegenerate
Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
restrict
IsCompl
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
orthogonal
β€”eq_bot_iff
Submodule.mem_inf
ZeroMemClass.zero_mem
IsCompl.of_eq
Submodule.eq_top_of_finrank_eq
LE.le.antisymm
Submodule.finrank_le
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
add_zero
finrank_bot
Submodule.finrank_sup_add_finrank_inf_eq
FiniteDimensional.finiteDimensional_submodule
finrank_add_finrank_orthogonal
le_self_add
Nat.instCanonicallyOrderedAdd
isCompl_span_singleton_orthogonal πŸ“–mathematicalIsOrtho
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
IsCompl
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
Submodule.span
Set
Set.instSingletonSet
orthogonal
β€”LinearMap.isCompl_span_singleton_orthogonal
isOrtho_def πŸ“–mathematicalβ€”IsOrtho
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
isOrtho_smul_left πŸ“–mathematicalβ€”IsOrtho
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
β€”Algebra.to_smulCommClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
IsDomain.to_noZeroDivisors
isOrtho_smul_right πŸ“–mathematicalβ€”IsOrtho
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
β€”map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
IsDomain.to_noZeroDivisors
isOrtho_zero_left πŸ“–mathematicalβ€”IsOrtho
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”LinearMap.isOrtho_zero_left
isOrtho_zero_right πŸ“–mathematicalβ€”IsOrtho
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”zero_right
ker_restrict_eq_of_codisjoint πŸ“–mathematicalCodisjoint
Submodule
CommSemiring.toSemiring
Submodule.instPartialOrder
Submodule.instOrderTop
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
LinearMap.ker
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
restrict
Submodule.comap
Submodule.subtype
β€”Submodule.ext
LinearMap.ext
Submodule.codisjoint_iff_exists_add_eq
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
add_zero
LinearMap.congr_fun
le_orthogonal_orthogonal πŸ“–mathematicalIsReflSubmodule
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
orthogonal
β€”β€”
linearIndependent_of_iIsOrtho πŸ“–mathematicaliIsOrtho
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
IsOrtho
LinearIndependent
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”linearIndependent_iff'
zero_left
Finset.sum_eq_single_of_mem
iIsOrtho_def
MulZeroClass.mul_zero
eq_zero_of_ne_zero_of_mul_right_eq_zero
IsDomain.to_noZeroDivisors
instIsDomain
Finset.sum_congr
smul_left
sum_left
mem_orthogonal_iff πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
orthogonal
IsOrtho
β€”β€”
ne_zero_of_not_isOrtho_self πŸ“–β€”IsOrtho
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
β€”β€”isOrtho_zero_left
nondegenerate_restrict_of_disjoint_orthogonal πŸ“–mathematicalIsRefl
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Disjoint
Submodule
CommSemiring.toSemiring
Submodule.instPartialOrder
Submodule.instOrderBot
orthogonal
Nondegenerate
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
restrict
β€”LinearMap.nondegenerate_restrict_of_disjoint_orthogonal
orthogonal_bot πŸ“–mathematicalβ€”orthogonal
Bot.bot
Submodule
CommSemiring.toSemiring
Submodule.instBot
Top.top
Submodule.instTop
β€”Submodule.ext
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
orthogonal_eq_bot_iff πŸ“–mathematicalIsRefl
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Nondegenerate
Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
restrict
orthogonal
Bot.bot
Submodule.instBot
Top.top
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Submodule.instTop
β€”eq_top_of_restrict_nondegenerate_of_orthogonal_eq_bot
eq_bot_iff
orthogonal_eq_top_iff πŸ“–mathematicalIsRefl
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Nondegenerate
Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
restrict
orthogonal
Top.top
Submodule.instTop
Bot.bot
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Submodule.instBot
β€”IsCompl.inf_eq_bot
isCompl_orthogonal_of_restrict_nondegenerate
inf_top_eq
orthogonal_bot
orthogonal_le πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
orthogonalβ€”β€”
orthogonal_orthogonal πŸ“–mathematicalNondegenerate
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
IsRefl
orthogonalβ€”Submodule.eq_of_le_of_finrank_le
FiniteDimensional.finiteDimensional_submodule
le_orthogonal_orthogonal
finrank_orthogonal
orthogonal_span_singleton_eq_toLin_ker πŸ“–mathematicalβ€”orthogonal
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Submodule.span
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Set
Set.instSingletonSet
LinearMap.ker
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
toLinHomAux₁
β€”LinearMap.orthogonal_span_singleton_eq_to_lin_ker
orthogonal_top_eq_bot πŸ“–mathematicalNondegenerate
IsRefl
orthogonal
Top.top
Submodule
CommSemiring.toSemiring
Submodule.instTop
Bot.bot
Submodule.instBot
β€”Submodule.eq_bot_iff
Submodule.mem_top
orthogonal_top_eq_ker πŸ“–mathematicalIsReflorthogonal
Top.top
Submodule
CommSemiring.toSemiring
Submodule.instTop
LinearMap.ker
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.addCommMonoid
LinearMap.module
β€”Submodule.ext
smulCommClass_self
LinearMap.IsRefl.eq_iff
restrict_nondegenerate_iff_isCompl_orthogonal πŸ“–mathematicalIsRefl
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Nondegenerate
Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
restrict
IsCompl
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
orthogonal
β€”isCompl_orthogonal_of_restrict_nondegenerate
nondegenerate_restrict_of_disjoint_orthogonal
IsCompl.disjoint
restrict_nondegenerate_orthogonal_spanSingleton πŸ“–mathematicalNondegenerate
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
IsRefl
IsOrtho
Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
orthogonal
Submodule.span
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Set
Set.instSingletonSet
Submodule.addCommMonoid
Submodule.module
restrict
β€”Submodule.mem_top
span_singleton_sup_orthogonal_eq_top
Submodule.coe_eq_zero
Submodule.mem_sup
add_right
add_zero
add_left
span_singleton_inf_orthogonal_eq_bot πŸ“–mathematicalIsOrtho
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Submodule.instMin
Submodule.span
Set
Set.instSingletonSet
orthogonal
Bot.bot
Submodule.instBot
β€”LinearMap.span_singleton_inf_orthogonal_eq_bot
span_singleton_sup_orthogonal_eq_top πŸ“–mathematicalIsOrtho
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Submodule.span
Set
Set.instSingletonSet
orthogonal
Top.top
Submodule.instTop
β€”LinearMap.span_singleton_sup_orthogonal_eq_top
toLin_restrict_ker_eq_inf_orthogonal πŸ“–mathematicalIsRefl
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Submodule.map
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Field.toDivisionRing
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Submodule.subtype
LinearMap.ker
CommSemiring.toSemiring
LinearMap
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.addCommMonoid
LinearMap.module
LinearMap.domRestrict
Subspace
Submodule.instMin
orthogonal
Top.top
Submodule.instTop
β€”Submodule.ext
RingHomSurjective.ids
IsOrtho.eq_1
LinearMap.ext
Submodule.mem_top
toLin_restrict_range_dualCoannihilator_eq_orthogonal πŸ“–mathematicalβ€”Submodule.dualCoannihilator
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
LinearMap.range
Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Submodule.addCommMonoid
LinearMap.addCommMonoid
Submodule.module
LinearMap.module
RingHomSurjective.ids
LinearMap.domRestrict
orthogonal
β€”Submodule.ext
RingHomSurjective.ids
mem_orthogonal_iff
smulCommClass_self
Submodule.mem_dualCoannihilator

LinearMap.BilinForm.IsAlt

Theorems

NameKindAssumesProvesValidatesDepends On
ortho_comm πŸ“–mathematicalLinearMap.BilinForm.IsAlt
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.BilinForm.IsOrthoβ€”LinearMap.IsAlt.ortho_comm

LinearMap.BilinForm.IsRefl

Theorems

NameKindAssumesProvesValidatesDepends On
ortho_comm πŸ“–mathematicalLinearMap.BilinForm.IsReflLinearMap.BilinForm.IsOrthoβ€”eq_zero

LinearMap.BilinForm.IsSymm

Theorems

NameKindAssumesProvesValidatesDepends On
ortho_comm πŸ“–mathematicalLinearMap.BilinForm.IsSymmLinearMap.BilinForm.IsOrthoβ€”LinearMap.IsSymm.ortho_comm
LinearMap.BilinForm.isSymm_iff

LinearMap.BilinForm.iIsOrtho

Theorems

NameKindAssumesProvesValidatesDepends On
nondegenerate_iff_not_isOrtho_basis_self πŸ“–mathematicalLinearMap.BilinForm.iIsOrtho
DFunLike.coe
Module.Basis
CommSemiring.toSemiring
Module.Basis.instFunLike
LinearMap.BilinForm.Nondegenerate
LinearMap.BilinForm.IsOrtho
β€”not_isOrtho_basis_self_of_nondegenerate
LinearMap.IsOrthoα΅’.nondegenerate_of_not_isOrtho_basis_self
instIsTorsionFree
not_isOrtho_basis_self_of_nondegenerate πŸ“–mathematicalLinearMap.BilinForm.iIsOrtho
DFunLike.coe
Module.Basis
CommSemiring.toSemiring
Module.Basis.instFunLike
LinearMap.BilinForm.Nondegenerate
LinearMap.BilinForm.IsOrthoβ€”LinearMap.IsOrthoα΅’.not_isOrtho_basis_self_of_separatingLeft

---

← Back to Index