charpoly 📖 | CompOp | 48 mathmath: charpoly_def, isNilRegular_iff_natTrailingDegree_charpoly_eq_nilRank, LieAlgebra.finrank_engel, LieAlgebra.isRegular_iff_natTrailingDegree_charpoly_eq_rank, charpoly_nilpotent_tfae, LieAlgebra.rank_le_natTrailingDegree_charpoly_ad, polyCharpolyAux_map_eval, Module.End.hasEigenvalue_iff_isRoot_charpoly, LieAlgebra.engel_isBot_of_isMin.lieCharpoly_map_eval, finrank_genEigenspace_le, IsNilpotent.charpoly_eq_X_pow_finrank, charpoly_monic, pow_eq_aeval_mod_charpoly, charpoly_eq_X_pow_iff, minpoly_dvd_charpoly, Matrix.charpoly_toLin, polyCharpolyAux_map_eq_charpoly, Matrix.charpoly_toLin', aeval_eq_aeval_mod_charpoly, hasEigenvalue_zero_tfae, eval_charpoly, charpoly_constantCoeff_eq_zero_iff, Matrix.charpoly_mulVecLin, isNilpotent_iff_charpoly, det_eq_sign_charpoly_coeff, aeval_self_charpoly, LieModule.isRegular_iff_natTrailingDegree_charpoly_eq_rank, polyCharpolyAux_map_aeval, finrank_maxGenEigenspace, polyCharpolyAux_coeff_eval, isNilpotent_tensor_residueField_iff, charpoly_one, polyCharpoly_map_eq_charpoly, charpoly_prodMap, charpoly_sub_smul, charpoly_natDegree, LinearEquiv.charpoly_conj, finrank_maxGenEigenspace_zero_eq, charpoly_zero, Module.End.mem_spectrum_iff_isRoot_charpoly, nilRank_le_natTrailingDegree_charpoly, not_hasEigenvalue_zero_tfae, finrank_maxGenEigenspace_eq, finrank_eigenspace_le, charpoly_baseChange, polyCharpoly_coeff_eval, LieModule.rank_le_natTrailingDegree_charpoly_ad, charpoly_toMatrix
|