Documentation Verification Report

FiniteDimensional

📁 Source: Mathlib/LinearAlgebra/Complex/FiniteDimensional.lean

Statistics

MetricCount
Definitions0
Theoremsfinrank_real_complex, finrank_real_complex_fact, instFiniteDimensionalReal, nonempty_linearEquiv_real, rank_rat_complex, rank_real_complex, rank_real_complex', complexToReal, rank_rat_real, finrank_real_of_complex, rank_real_of_complex
11
Total11

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
finrank_real_complex 📖mathematicalModule.finrank
Real
Complex
Real.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Module.complexToReal
addCommGroup
Semiring.toModule
instSemiring
Module.finrank_eq_card_basis
IsNoetherianRing.strongRankCondition
Real.instNontrivial
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
Fintype.card_fin
finrank_real_complex_fact 📖mathematicalFact
Module.finrank
Real
Complex
Real.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Module.complexToReal
addCommGroup
Semiring.toModule
instSemiring
finrank_real_complex
instFiniteDimensionalReal 📖mathematicalFiniteDimensional
Real
Complex
Real.instDivisionRing
addCommGroup
Module.complexToReal
Semiring.toModule
instSemiring
Module.Basis.finiteDimensional_of_finite
Finite.of_fintype
nonempty_linearEquiv_real 📖mathematicalLinearEquiv
Rat.semiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Complex
Real
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Real.instAddCommMonoid
Algebra.toModule
Rat.commSemiring
instSemiring
DivisionRing.toRatAlgebra
Field.toDivisionRing
instField
instCharZero
Real.semiring
Real.instDivisionRing
IsStrictOrderedRing.toCharZero
Ring.toSemiring
DivisionRing.toRing
Real.partialOrder
Real.instIsStrictOrderedRing
RingHomInvPair.ids
instCharZero
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
LinearEquiv.nonempty_equiv_iff_rank_eq
IsNoetherianRing.strongRankCondition
Rat.nontrivial
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
Module.Free.of_divisionRing
rank_rat_complex
Real.rank_rat_real
rank_rat_complex 📖mathematicalModule.rank
Complex
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Algebra.toModule
Rat.commSemiring
instSemiring
DivisionRing.toRatAlgebra
Field.toDivisionRing
instField
instCharZero
Cardinal.continuum
instCharZero
Module.Free.rank_eq_mk_of_infinite_lt
IsNoetherianRing.strongRankCondition
Rat.nontrivial
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
Module.Free.of_divisionRing
NoMinOrder.infinite
instNoMinOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
Cardinal.mk_eq_aleph0
Encodable.countable
Cardinal.lift_id
Cardinal.mk_complex
Cardinal.aleph0_lt_continuum
rank_real_complex 📖mathematicalModule.rank
Real
Complex
Real.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Module.complexToReal
addCommGroup
Semiring.toModule
instSemiring
Cardinal
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
Nat.instAtLeastTwoHAddOfNat
IsNoetherianRing.strongRankCondition
Real.instNontrivial
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
instFiniteDimensionalReal
finrank_real_complex
rank_real_complex' 📖mathematicalCardinal.lift
Module.rank
Real
Complex
Real.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Module.complexToReal
addCommGroup
Semiring.toModule
instSemiring
Cardinal
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
Nat.instAtLeastTwoHAddOfNat
Module.finrank_eq_rank
IsNoetherianRing.strongRankCondition
Real.instNontrivial
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
instFiniteDimensionalReal
finrank_real_complex
Cardinal.lift_natCast
Nat.cast_ofNat

FiniteDimensional

Theorems

NameKindAssumesProvesValidatesDepends On
complexToReal 📖mathematicalFiniteDimensional
Real
Real.instDivisionRing
Module.complexToReal
trans
IsScalarTower.complexToReal
IsScalarTower.left
Complex.instFiniteDimensionalReal

Real

Theorems

NameKindAssumesProvesValidatesDepends On
rank_rat_real 📖mathematicalModule.rank
Real
Rat.semiring
instAddCommMonoid
Algebra.toModule
Rat.commSemiring
semiring
DivisionRing.toRatAlgebra
instDivisionRing
IsStrictOrderedRing.toCharZero
Ring.toSemiring
DivisionRing.toRing
partialOrder
instIsStrictOrderedRing
Cardinal.continuum
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
Module.Free.rank_eq_mk_of_infinite_lt
IsNoetherianRing.strongRankCondition
Rat.nontrivial
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
Module.Free.of_divisionRing
NoMinOrder.infinite
instNoMinOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
Cardinal.mk_eq_aleph0
Encodable.countable
Cardinal.lift_id
Cardinal.mk_real
Cardinal.aleph0_lt_continuum

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
finrank_real_of_complex 📖mathematicalModule.finrank
Real
Real.semiring
AddCommGroup.toAddCommMonoid
Module.complexToReal
Complex
Complex.instSemiring
Module.finrank_mul_finrank
IsScalarTower.complexToReal
IsScalarTower.left
IsNoetherianRing.strongRankCondition
Real.instNontrivial
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
Complex.instNontrivial
Module.Free.of_divisionRing
Complex.finrank_real_complex
rank_real_of_complex 📖mathematicalModule.rank
Real
Real.semiring
AddCommGroup.toAddCommMonoid
Module.complexToReal
Cardinal
Cardinal.instMul
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex
Complex.instSemiring
Nat.instAtLeastTwoHAddOfNat
lift_rank_mul_lift_rank
IsScalarTower.complexToReal
IsScalarTower.left
IsNoetherianRing.strongRankCondition
Real.instNontrivial
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
Complex.instNontrivial
Module.Free.of_divisionRing
Complex.rank_real_complex'
Cardinal.lift_id'

---

← Back to Index