Documentation Verification Report

Basic

๐Ÿ“ Source: Mathlib/LinearAlgebra/Dimension/Basic.lean

Statistics

MetricCount
Definitionsrank
1
Theoremslift_rank_eq_of_equiv_equiv, lift_rank_le_of_injective_injective, lift_rank_le_of_surjective_injective, rank_eq_of_equiv_equiv, rank_le_of_injective_injective, rank_le_of_surjective_injective, rank_self, lift_rank_eq, lift_rank_map_eq, rank_eq, rank_map_eq, encard_le_toENat_rank, aleph0_le_rank, cardinal_le_rank, cardinal_le_rank', cardinal_lift_le_rank, lift_rank_le_of_injective, lift_rank_le_of_surjective, rank_le_of_injective, rank_le_of_surjective, le_rank_iff, le_rank_iff_exists_finset, le_rank_iff_exists_linearMap, lift_rank_bot_le_lift_rank_of_isScalarTower, one_le_rank_iff, rank_bot_le_rank_of_isScalarTower, rank_def, rank_top_le_rank_of_isScalarTower, rank_le, rank_mono, lift_rank_eq_of_equiv_equiv, lift_rank_le_of_injective_injective, lift_rank_le_of_injective_injectiveโ‚›, lift_rank_le_of_surjective_injective, lift_rank_map_le, lift_rank_range_le, lift_rank_range_of_injective, nonempty_linearIndependent_set, rank_eq_of_equiv_equiv, rank_le_card, rank_le_of_injective_injective, rank_le_of_injective_injectiveโ‚›, rank_le_of_isSMulRegular, rank_le_of_surjective_injective, rank_map_le, rank_range_le, rank_range_of_injective, rank_range_of_surjective, rank_subsingleton, rank_top
50
Total51

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
lift_rank_eq_of_equiv_equiv ๐Ÿ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
algebraMap
RingEquiv.toRingHom
Cardinal.lift
Module.rank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
toModule
โ€”lift_rank_eq_of_equiv_equiv
RingEquivClass.toAddEquivClass
RingEquiv.instRingEquivClass
RingEquiv.bijective
smul_def
map_mul
NonUnitalRingHomClass.toMulHomClass
RingEquivClass.toNonUnitalRingHomClass
lift_rank_le_of_injective_injective ๐Ÿ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
RingHom.comp
algebraMap
Cardinal
Cardinal.instLE
Cardinal.lift
Module.rank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
toModule
โ€”lift_rank_le_of_injective_injectiveโ‚›
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
smul_def
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
lift_rank_le_of_surjective_injective ๐Ÿ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
RingHom.comp
algebraMap
Cardinal
Cardinal.instLE
Cardinal.lift
Module.rank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
toModule
โ€”lift_rank_le_of_surjective_injective
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
smul_def
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
rank_eq_of_equiv_equiv ๐Ÿ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
algebraMap
RingEquiv.toRingHom
Module.rank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
toModule
โ€”Cardinal.lift_id
lift_rank_eq_of_equiv_equiv
rank_le_of_injective_injective ๐Ÿ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
RingHom.comp
algebraMap
Cardinal
Cardinal.instLE
Module.rank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
toModule
โ€”Cardinal.lift_id
lift_rank_le_of_injective_injective
rank_le_of_surjective_injective ๐Ÿ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
RingHom.comp
algebraMap
Cardinal
Cardinal.instLE
Module.rank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
toModule
โ€”Cardinal.lift_id
lift_rank_le_of_surjective_injective

CommSemiring

Theorems

NameKindAssumesProvesValidatesDepends On
rank_self ๐Ÿ“–mathematicalโ€”Module.rank
toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Cardinal
Cardinal.instOne
โ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
rank_subsingleton
le_antisymm_iff
not_lt
Order.succ_le_iff
Cardinal.instNoMaxOrder
Nat.cast_one
Cardinal.nat_succ
Module.le_rank_iff_exists_linearMap
Module.one_le_rank_iff
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
mul_comm
mul_one
MulZeroClass.mul_zero
Matrix.cons_val_fin_one
zero_ne_one
NeZero.one
RingHomInvPair.ids
LinearEquiv.injective

LinearEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
lift_rank_eq ๐Ÿ“–mathematicalโ€”Cardinal.lift
Module.rank
โ€”RingHomInvPair.ids
le_antisymm
LinearMap.lift_rank_le_of_injective
injective
lift_rank_map_eq ๐Ÿ“–mathematicalโ€”Cardinal.lift
Module.rank
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
toLinearMap
RingHomInvPair.ids
Submodule.addCommMonoid
Submodule.module
โ€”RingHomInvPair.ids
RingHomSurjective.invPair
lift_rank_eq
rank_eq ๐Ÿ“–mathematicalโ€”Module.rankโ€”RingHomInvPair.ids
lift_rank_eq
rank_map_eq ๐Ÿ“–mathematicalโ€”Module.rank
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
toLinearMap
RingHomInvPair.ids
Submodule.addCommMonoid
Submodule.module
โ€”RingHomInvPair.ids
RingHomSurjective.invPair
rank_eq

LinearIndepOn

Theorems

NameKindAssumesProvesValidatesDepends On
encard_le_toENat_rank ๐Ÿ“–mathematicalLinearIndepOnENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Set.encard
DFunLike.coe
OrderRingHom
Cardinal
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Cardinal.commSemiring
Cardinal.partialOrder
instCommSemiringENat
OrderRingHom.instFunLike
Cardinal.toENat
Module.rank
โ€”OrderRingHom.instOrderHomClass
Cardinal.toENat_lift
OrderHom.mono
LinearIndependent.cardinal_lift_le_rank
linearIndependent

LinearIndependent

Theorems

NameKindAssumesProvesValidatesDepends On
aleph0_le_rank ๐Ÿ“–mathematicalLinearIndependentCardinal
Cardinal.instLE
Cardinal.aleph0
Module.rank
โ€”Cardinal.aleph0_le_lift
LE.le.trans
cardinal_lift_le_rank
cardinal_le_rank ๐Ÿ“–mathematicalLinearIndependentCardinal
Cardinal.instLE
Module.rank
โ€”Cardinal.lift_id
cardinal_lift_le_rank
cardinal_le_rank' ๐Ÿ“–mathematicalLinearIndependent
Set.Elem
Set
Set.instMembership
Cardinal
Cardinal.instLE
Module.rank
โ€”cardinal_le_rank
cardinal_lift_le_rank ๐Ÿ“–mathematicalLinearIndependentCardinal
Cardinal.instLE
Cardinal.lift
Module.rank
โ€”Module.rank_def
le_trans
linearIndepOn_id
Cardinal.lift_mk_le'
injective
Cardinal.lift_le
le_ciSup
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
lift_rank_le_of_injective ๐Ÿ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
Cardinal
Cardinal.instLE
Cardinal.lift
Module.rank
โ€”lift_rank_le_of_injective_injectiveโ‚›
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
map_smul
lift_rank_le_of_surjective ๐Ÿ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
Cardinal
Cardinal.instLE
Cardinal.lift
Module.rank
โ€”RingHomSurjective.ids
rank_range_of_surjective
lift_rank_range_le
rank_le_of_injective ๐Ÿ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
Cardinal
Cardinal.instLE
Module.rank
โ€”Cardinal.lift_le
lift_rank_le_of_injective
rank_le_of_surjective ๐Ÿ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
Cardinal
Cardinal.instLE
Module.rank
โ€”RingHomSurjective.ids
rank_range_of_surjective
rank_range_le

Module

Definitions

NameCategoryTheorems
rank ๐Ÿ“–CompOp
318 mathmath: rank_fun_infinite, rank_lt_aleph0_iff, rank_def, SymmetricAlgebra.rank_eq, Subfield.rank_comap, natCast_le_rank_iff_finset, Subalgebra.adjoin_rank_le, lift_rank_of_isLocalizedModule_of_free, Basis.mk_eq_rank, rank_le_card_isVisible, lift_rank_mul_lift_rank, IsNoetherian.iff_rank_lt_aleph0, LinearIndependent.cardinal_lift_le_rank, lift_rank_map_le, LinearMap.rank_le_domain, Ideal.rank_prime_pow_ramificationIdx, Basis.mk_eq_rank', Quaternion.rank_eq_four, rank_le_one, exists_set_linearIndependent_of_isDomain, Field.Emb.Cardinal.directed_filtration, rank_finsupp, Field.Emb.Cardinal.instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor, IsPurelyInseparable.insepDegree_eq, length_of_free, Field.insepDegree_le_rank, rank_finsupp_self, Field.Emb.Cardinal.filtration_succ, LinearMap.lift_rank_le_of_surjective, IntermediateField.LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic_right, aleph0_le_rank_of_isEmpty_oreSet, Submodule.IsLattice.rank', rank_zero_iff_forall_zero, Basis.dual_rank_eq, rank_eq_card_basis, IntermediateField.relrank_mul_rank_top, rank_map_le, rank_baseChange, rank_eq_one, le_rank_iff_exists_linearMap, Subalgebra.rank_sup_eq_rank_left_mul_rank_of_free, LinearMap.rank_eq_of_surjective, lift_rank_range_of_injective, Subalgebra.LinearDisjoint.adjoin_rank_eq_rank_left, IntermediateField.LinearDisjoint.adjoin_rank_eq_rank_left_of_isAlgebraic, rank_span_set, rank_directSum, rank_bot, FixedPoints.rank_le_card, ModularForm.levelOne_neg_weight_rank_zero, rank_matrix_module, Submodule.LinearDisjoint.rank_inf_le_one_of_commute_of_flat, Subfield.relrank_mul_rank_top, one_lt_rank_of_one_lt_finrank, rank_le_of_injective_injective, rank_pos_iff_of_free, rank_mul_rank, rank_subsingleton', Basis.mk_range_eq_rank, Field.Emb.Cardinal.two_le_deg, LinearEquiv.lift_rank_eq, IntermediateField.LinearDisjoint.rank_right_mul_adjoin_rank_eq_of_isAlgebraic, Submodule.rank_quotient_add_rank, Submodule.rank_le_spanRank, Field.Emb.Cardinal.isLeast_leastExt, rank_submodule_le_one_iff, one_le_rank_iff, MvPolynomial.rank_R, rank_bot_le_rank_of_isScalarTower, Field.Emb.Cardinal.succEquiv_coherence, CommSemiring.rank_self, Field.rank_mul_sepDegree_of_isSeparable, rank_range_le, Submodule.rank_le, natCast_le_rank_iff, LinearIndependent.cardinal_le_rank, lift_rank_le_of_surjective_injective, Algebra.IsStandardSmoothOfRelativeDimension.iff_of_isStandardSmooth, Submodule.LinearDisjoint.rank_inf_le_one_of_flat, LinearEquiv.mem_dilatransvections_iff_rank, rank_top_le_rank_of_isScalarTower, rank_le_of_surjective_injective, IntermediateField.relrank_top_right, Field.Emb.Cardinal.noMaxOrder_rank_toType, Subalgebra.LinearDisjoint.rank_sup_of_free, strongRankCondition_iff_forall_rank_lt_aleph0, le_rank_iff, rank_linearMap, IntermediateField.LinearDisjoint.rank_right_mul_adjoin_rank_eq_of_isAlgebraic_right, Field.Emb.cardinal_eq_of_isSeparable, lift_rank_bot_le_lift_rank_of_isScalarTower, LinearRecurrence.solSpace_rank, RCLike.rank_le_two, TensorAlgebra.rank_eq, exists_linearIndepOn_of_lt_rank, Field.Emb.Cardinal.instIsSeparableSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, le_rank_iff_exists_finset, IsLocalizedModule.rank_eq, ModularForm.levelOne_weight_zero_rank_one, rank_polynomial_polynomial, Algebra.rank_le_of_surjective_injective, lift_cardinalMk_eq_lift_cardinalMk_field_pow_lift_rank, rank_pos_iff_nontrivial, lift_rank_add_lift_rank_le_rank_prod, QuadraticAlgebra.rank_eq_two, Field.Emb.Cardinal.strictMono_leastExt, IntermediateField.rank_adjoin_eq_one_iff, lift_rank_eq_of_equiv_equiv, LinearMap.lift_rank_le_of_injective, rank_submodule_le_one_iff', Algebra.rank_le_of_injective_injective, rank_pos_of_free, IntermediateField.rank_top, LinearMap.rank_le_of_injective, IsLocalizedModule.lift_rank_eq, rank_finsupp_self', LinearMap.lift_rank_eq_of_surjective, Submodule.rank_mono, lt_rank_of_lt_finrank, IntermediateField.LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_right, Field.rank_mul_insepDegree_of_isPurelyInseparable, rank_quotient_add_rank_of_isDomain, Field.Emb.Cardinal.equivSucc_coherence, Submodule.LinearDisjoint.rank_inf_le_one_of_commute_of_flat_right, rank_eq_zero_iff_isTorsion, rank_tensorProduct, rank_le_of_injective_injectiveโ‚›, rank_ulift, LinearIndependent.cardinal_le_rank', iSupIndep.subtype_ne_bot_le_rank, Algebra.lift_rank_eq_of_equiv_equiv, Algebra.Transcendental.rank_eq_cardinalMk, cardinalMk_eq_cardinalMk_field_pow_rank, QuaternionAlgebra.rank_eq_four, Complex.rank_real_complex', rank_eq_one_iff, rank_le_card, rank_span_finset_le, le_rank_iff_exists_linearIndependent, Invertible.rank_eq_one, Submodule.rank_eq_spanRank_of_free, IntermediateField.rank_bot, Submodule.rank_eq_zero, Subalgebra.LinearDisjoint.rank_eq_one_of_commute_of_flat_of_self_of_inj, Subalgebra.LinearDisjoint.rank_inf_eq_one_of_flat_of_inj, rank_punit, finrank_eq_rank, HasRankNullity.rank_quotient_add_rank, Field.lift_rank_mul_lift_insepDegree_of_isPurelyInseparable, IntermediateField.LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic_right, Submodule.IsLattice.rank_of_pi, toENat_rank_span_set, Submodule.finrank_eq_rank, rank_eq_of_equiv_equiv, IsBaseChange.rank_eq_of_le_nonZeroDivisors, FreeAlgebra.rank_eq, Algebra.lift_rank_le_of_injective_injective, rank_zero_iff_of_free, IntermediateField.relrank_dvd_rank_top_of_le, rank_span_le, rank_submodule_eq_one_iff, Field.Emb.Cardinal.filtration_apply, IntermediateField.relrank_dvd_rank_bot, LinearMap.rank_le_range, exists_set_linearIndependent, Subalgebra.rank_sup_eq_rank_right_mul_rank_of_free, rank_matrix_module', Subfield.relrank_dvd_rank_top_of_le, collinear_iff_rank_le_one, Real.rank_rat_real, Field.Emb.Cardinal.deg_lt_aleph0, RatFunc.rank_ratFunc_ratFunc, IntermediateField.LinearDisjoint.rank_sup, Subalgebra.LinearDisjoint.rank_inf_eq_one_of_flat_left_of_inj, LinearMap.lift_rank_range_add_rank_ker, IntermediateField.rank_sup_le_of_isAlgebraic, rank_matrix', IntermediateField.LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic_left, dual_rank_eq, rank_self, Submodule.rank_add_le_rank_add_rank, Field.sepDegree_mul_insepDegree, IntermediateField.rank_eq_one_iff, LinearEquiv.nonempty_equiv_iff_lift_rank_eq, rank_quotient_add_rank_le, IsBaseChange.lift_rank_eq, IntermediateField.adjoin_rank_le_of_isAlgebraic_right, IntermediateField.LinearDisjoint.adjoin_rank_eq_rank_left_of_isAlgebraic_left, rank_matrix, Subfield.relrank_top_right, Submodule.LinearDisjoint.rank_le_one_of_flat_of_self, Ideal.rank_pow_quot_aux, Algebra.rank_eq_of_equiv_equiv, Subfield.relrank_eq_rank_of_le, Field.Emb.Cardinal.strictMono_filtration, LinearEquiv.rank_eq, IntermediateField.LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic_left, IsLocalization.rank_eq, Field.sepDegree_eq_of_isPurelyInseparable_of_isSeparable, Free.rank_eq_mk_of_infinite_lt, IntermediateField.rank_top', Subalgebra.rank_sup_le_of_free, rank_quotient_le, Ideal.rank_pow_quot, Submodule.LinearDisjoint.rank_le_one_of_commute_of_flat_of_self, rank_eq_ofNat_iff_finrank_eq_ofNat, rank_le_one_iff_top_isPrincipal, Subalgebra.LinearDisjoint.rank_inf_eq_one_of_commute_of_flat_of_inj, rank_span_of_finset, IntermediateField.adjoin_rank_le_of_isAlgebraic, Algebra.IsAlgebraic.lift_rank_of_isFractionRing, LinearIndependent.aleph0_le_rank, rank_fin_fun, cardinalMk_algHom_le_rank, rank_eq_one_iff_finrank_eq_one, Algebra.IsAlgebraic.rank_fractionRing, Subalgebra.LinearDisjoint.rank_inf_eq_one_of_flat_right_of_inj, rank_range_of_injective, LinearEquiv.rank_map_eq, LinearMap.rank_le_of_surjective, Algebra.IsSeparable.sepDegree_eq, IntermediateField.LinearDisjoint.rank_right_mul_adjoin_rank_eq_of_isAlgebraic_left, IntermediateField.LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic, rank_real_of_complex, Field.Emb.Cardinal.iSup_adjoin_eq_top, rank_pos_iff_exists_ne_zero, max_aleph0_card_le_rank_fun_nat, finrank_eq_rank', rank_prod', Subfield.lift_rank_comap, LinearEquiv.nonempty_equiv_iff_rank_eq, MulOpposite.rank, Subalgebra.rank_eq_one_iff, Submodule.rank_le_one_iff_isPrincipal, IntermediateField.rank_sup_le, Algebra.IsAlgebraic.rank_of_isFractionRing, Field.Emb.Cardinal.adjoin_image_leastExt, IntermediateField.LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic, rank_add_rank_le_rank_prod, rank_add_rank_split, Subalgebra.LinearDisjoint.rank_inf_eq_one_of_commute_of_flat_left_of_inj, Field.Emb.Cardinal.instFiniteDimensionalSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, Algebra.SubmersivePresentation.rank_kaehlerDifferential, IsBaseChange.rank_eq, ModuleCat.free_shortExact_rank_add, Complex.rank_rat_complex, LinearIndepOn.encard_le_toENat_rank, rank_eq_zero_iff, IntermediateField.relrank_eq_rank_of_le, rank_quotient_add_rank_of_divisionRing, rank_pos, IntermediateField.rank_eq_rank_subalgebra, rank_finsupp', Field.lift_rank_mul_lift_sepDegree_of_isSeparable, Algebra.IsAlgebraic.rank_fractionRing_mvPolynomial, rank_zero_iff, IntermediateField.adjoin_rank_le_of_isAlgebraic_left, rank_fun, IntermediateField.rank_bot', lift_rank_range_le, rank_fun', IntermediateField.rank_comap, LinearEquiv.lift_rank_map_eq, IntermediateField.rank_bot_mul_relrank, lift_rank_le_of_injective_injective, rank_span, le_rank_iff_exists_linearIndependent_finset, lift_rank_le_of_injective_injectiveโ‚›, rank_fun_eq_lift_mul, rank_le_of_isSMulRegular, IsTranscendenceBasis.lift_rank_eq_max_lift, Submodule.rank_sup_add_rank_inf_eq, MvRatFunc.rank_eq_max_lift, rank_top, IntermediateField.lift_rank_comap, IntermediateField.LinearDisjoint.adjoin_rank_eq_rank_left_of_isAlgebraic_right, rank_le_one_iff, MvPolynomial.rank_eq, Algebra.IsStandardSmoothOfRelativeDimension.rank_kaehlerDifferential, Field.Emb.Cardinal.adjoin_basis_eq_top, rank_quotient_eq_of_le_torsion, Submodule.LinearDisjoint.rank_inf_le_one_of_commute_of_flat_left, IntermediateField.LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_left, IntermediateField.relrank_bot_left, Subalgebra.LinearDisjoint.rank_inf_eq_one_of_commute_of_flat_right_of_inj, HasRankNullity.exists_set_linearIndependent, Subalgebra.LinearDisjoint.adjoin_rank_eq_rank_right, Field.sepDegree_le_rank, Free.rank_eq_card_chooseBasisIndex, rank_tensorProduct', rank_lt_aleph0, Algebra.lift_rank_le_of_surjective_injective, Subalgebra.bot_eq_top_iff_rank_eq_one, rank_prod, rank_le, Subalgebra.LinearDisjoint.rank_eq_one_of_flat_of_self_of_inj, IntermediateField.LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic, Basis.mk_eq_rank'', rank_linearMap_self, rank_pi, Submodule.LinearDisjoint.rank_inf_le_one_of_flat_right, Algebra.IsAlgebraic.rank_fractionRing_polynomial, rank_mvPolynomial_mvPolynomial, Subalgebra.rank_bot, Submodule.LinearDisjoint.rank_inf_le_one_of_flat_left, rank_matrix'', length_eq_rank, IntermediateField.rank_adjoin_simple_eq_one_iff, rank_subsingleton, Subalgebra.rank_toSubmodule, MvPolynomial.rank_eq_lift, LinearMap.rank_range_add_rank_ker, Subalgebra.rank_top, Complex.rank_real_complex, subalgebra_top_rank_eq_submodule_top_rank, IsBaseChange.lift_rank_eq_of_le_nonZeroDivisors, rank_range_of_surjective, Algebra.rank_adjoin_le

Theorems

NameKindAssumesProvesValidatesDepends On
le_rank_iff ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
Cardinal.instNatCast
rank
LinearIndependent
โ€”le_rank_iff_exists_finset
LinearIndependent.comp
Equiv.injective
LinearIndependent.injective
Finset.card_map
Fintype.card_fin
Finset.coe_map
Set.image_congr
Finset.coe_univ
Set.image_univ
linearIndepOn_id_range_iff
le_rank_iff_exists_finset ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
Cardinal.instNatCast
rank
Finset.card
LinearIndepOn
SetLike.coe
Finset
Finset.instSetLike
โ€”Mathlib.Tactic.Contrapose.contraposeโ‚
Mathlib.Tactic.Push.not_and_eq
Finset.coe_empty
rank_def
Cardinal.nat_succ
Order.lt_succ_iff
Cardinal.instNoMaxOrder
ciSup_le_iff
nonempty_linearIndependent_set
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
Mathlib.Tactic.Push.not_forall_eq
Cardinal.exists_finset_eq_card
Order.succ_le_iff
Finset.card_map
LinearIndepOn.mono
Finset.coe_map
Set.image_congr
Subtype.coe_preimage_self
LE.le.trans_eq'
LinearIndependent.cardinal_le_rank'
Cardinal.mk_fintype
Fintype.card_coe
Cardinal.instCharZero
le_rank_iff_exists_linearMap ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
Cardinal.instNatCast
rank
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
โ€”le_rank_iff
RingHomInvPair.ids
Finite.of_fintype
LinearEquiv.injective
RingHomCompTriple.ids
LinearIndependent.map_injOn
Basis.linearIndependent
Function.Injective.injOn
lift_rank_bot_le_lift_rank_of_isScalarTower ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
Cardinal.lift
rank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
โ€”LinearMap.lift_rank_le_of_injective
LinearMap.IsScalarTower.compatibleSMul'
faithfulSMul_iff_injective_smul_one
one_le_rank_iff ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
Cardinal.instOne
rank
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
โ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
rank_subsingleton
le_rank_iff_exists_linearMap
RingHomCompTriple.ids
RingHomInvPair.ids
LinearEquiv.injective
rank_bot_le_rank_of_isScalarTower ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
rank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
โ€”Cardinal.lift_id
lift_rank_bot_le_lift_rank_of_isScalarTower
rank_def ๐Ÿ“–mathematicalโ€”rank
iSup
Cardinal
Set
LinearIndepOn
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
Set.Elem
โ€”โ€”
rank_top_le_rank_of_isScalarTower ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
rank
โ€”rank_def
ciSup_le'
le_ciSup_of_le
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
LinearIndependent.restrict_scalars
le_rfl

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
rank_le ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
Module.rank
Submodule
SetLike.instMembership
setLike
addCommMonoid
module
โ€”rank_top
rank_mono
le_top
rank_mono ๐Ÿ“–mathematicalSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Cardinal
Cardinal.instLE
Module.rank
SetLike.instMembership
setLike
addCommMonoid
module
โ€”LinearMap.rank_le_of_injective

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
lift_rank_eq_of_equiv_equiv ๐Ÿ“–mathematicalFunction.Bijective
DFunLike.coe
AddEquiv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
EquivLike.toFunLike
AddEquiv.instEquivLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Cardinal.lift
Module.rank
โ€”LE.le.antisymm
lift_rank_le_of_surjective_injective
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
AddEquiv.injective
lift_rank_le_of_injective_injectiveโ‚›
AddEquiv.symm_apply_eq
AddEquiv.apply_symm_apply
lift_rank_le_of_injective_injective ๐Ÿ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom.instFunLike
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Cardinal
Cardinal.instLE
Cardinal.lift
Module.rank
โ€”Module.rank_def
Cardinal.lift_iSup
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
ciSup_mono'
univLE_of_max
LinearIndepOn.id_image
LinearIndependent.map_of_injective_injective
LinearIndepOn.linearIndependent
AddMonoidHom.map_zero
Cardinal.lift_mk_le'
lift_rank_le_of_injective_injectiveโ‚› ๐Ÿ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Cardinal
Cardinal.instLE
Cardinal.lift
Module.rank
โ€”Module.rank_def
Cardinal.lift_iSup
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
ciSup_mono'
univLE_of_max
LinearIndepOn.id_image
LinearIndependent.map_of_injective_injectiveโ‚›
LinearIndepOn.linearIndependent
Cardinal.lift_mk_le'
lift_rank_le_of_surjective_injective ๐Ÿ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Cardinal
Cardinal.instLE
Cardinal.lift
Module.rank
โ€”Function.Surjective.hasRightInverse
lift_rank_le_of_injective_injectiveโ‚›
lift_rank_map_le ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
Cardinal.lift
Module.rank
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Submodule.addCommMonoid
Submodule.module
โ€”RingHomSurjective.ids
RingHomCompTriple.ids
lift_rank_range_le
Submodule.range_subtype
LinearMap.range_comp
lift_rank_range_le ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
Cardinal.lift
Module.rank
Submodule
SetLike.instMembership
Submodule.setLike
LinearMap.range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Submodule.addCommMonoid
Submodule.module
โ€”RingHomSurjective.ids
Module.rank_def
Cardinal.lift_iSup
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
ciSup_le'
le_trans
LinearIndependent.of_comp
LinearIndependent.comp
Equiv.injective
Eq.ge
Cardinal.lift_mk_eq'
Cardinal.lift_le
le_ciSup
lift_rank_range_of_injective ๐Ÿ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Cardinal.lift
Module.rank
Submodule
SetLike.instMembership
Submodule.setLike
LinearMap.range
RingHomSurjective.ids
Submodule.addCommMonoid
Submodule.module
โ€”RingHomSurjective.invPair
RingHomInvPair.ids
LinearEquiv.lift_rank_eq
nonempty_linearIndependent_set ๐Ÿ“–mathematicalโ€”Set
LinearIndepOn
โ€”linearIndepOn_empty
rank_eq_of_equiv_equiv ๐Ÿ“–mathematicalFunction.Bijective
DFunLike.coe
AddEquiv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
EquivLike.toFunLike
AddEquiv.instEquivLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Module.rankโ€”Cardinal.lift_id
lift_rank_eq_of_equiv_equiv
rank_le_card ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
Module.rank
โ€”Eq.trans_le
Module.rank_def
ciSup_le'
Cardinal.mk_set_le
rank_le_of_injective_injective ๐Ÿ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom.instFunLike
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Cardinal
Cardinal.instLE
Module.rank
โ€”Cardinal.lift_id
lift_rank_le_of_injective_injective
rank_le_of_injective_injectiveโ‚› ๐Ÿ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Cardinal
Cardinal.instLE
Module.rank
โ€”Cardinal.lift_id
lift_rank_le_of_injective_injectiveโ‚›
rank_le_of_isSMulRegular ๐Ÿ“–mathematicalIsSMulRegular
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
Submodule
SetLike.instMembership
Submodule.setLike
Cardinal
Cardinal.instLE
Module.rank
Submodule.addCommMonoid
Submodule.module
โ€”LinearMap.rank_le_of_injective
IsScalarTower.to_smulCommClass'
IsScalarTower.left
IsScalarTower.to_smulCommClass
rank_le_of_surjective_injective ๐Ÿ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Cardinal
Cardinal.instLE
Module.rank
โ€”Cardinal.lift_id
lift_rank_le_of_surjective_injective
rank_map_le ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
Module.rank
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Submodule.addCommMonoid
Submodule.module
โ€”RingHomSurjective.ids
Cardinal.lift_id
lift_rank_map_le
rank_range_le ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
Module.rank
Submodule
SetLike.instMembership
Submodule.setLike
LinearMap.range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Submodule.addCommMonoid
Submodule.module
โ€”RingHomSurjective.ids
Cardinal.lift_id
lift_rank_range_le
rank_range_of_injective ๐Ÿ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Module.rank
Submodule
SetLike.instMembership
Submodule.setLike
LinearMap.range
RingHomSurjective.ids
Submodule.addCommMonoid
Submodule.module
โ€”RingHomSurjective.invPair
RingHomInvPair.ids
LinearEquiv.rank_eq
rank_range_of_surjective ๐Ÿ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Module.rank
Submodule
SetLike.instMembership
Submodule.setLike
LinearMap.range
RingHomSurjective.ids
Submodule.addCommMonoid
Submodule.module
โ€”RingHomSurjective.ids
LinearMap.range_eq_top
rank_top
rank_subsingleton ๐Ÿ“–mathematicalโ€”Module.rank
Cardinal
Cardinal.instOne
โ€”Module.rank_def
ciSup_eq_of_forall_le_of_forall_lt_exists_gt
nonempty_linearIndependent_set
Module.subsingleton
LinearIndepOn.of_subsingleton
LT.lt.trans_eq
Cardinal.mk_singleton
rank_top ๐Ÿ“–mathematicalโ€”Module.rank
Submodule
SetLike.instMembership
Submodule.setLike
Top.top
Submodule.instTop
Submodule.addCommMonoid
Submodule.module
โ€”LinearEquiv.rank_eq

---

โ† Back to Index