Documentation Verification Report

ErdosKaplansky

πŸ“ Source: Mathlib/LinearAlgebra/Dimension/ErdosKaplansky.lean

Statistics

MetricCount
Definitions0
Theoremslift_rank_lt_rank_dual, lift_rank_lt_rank_dual', max_aleph0_card_le_rank_fun_nat, rank_dual_eq_card_dual_of_aleph0_le_rank, rank_dual_eq_card_dual_of_aleph0_le_rank', rank_fun_infinite, rank_lt_rank_dual, rank_lt_rank_dual'
8
Total8

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
lift_rank_lt_rank_dual πŸ“–mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.lift
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semiring.toModule
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”Algebra.to_smulCommClass
rank_dual_eq_card_dual_of_aleph0_le_rank
SMulCommClass.opposite_mid
IsScalarTower.left
rank_dual_eq_card_dual_of_aleph0_le_rank'
lift_rank_lt_rank_dual'
lift_rank_lt_rank_dual' πŸ“–mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
Module.rank
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.lift
MulOpposite
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
Semiring.toModule
MulOpposite.instSemiring
LinearMap.addCommMonoid
LinearMap.module
Semiring.toOppositeModule
SMulCommClass.opposite_mid
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Module.toDistribMulAction
IsScalarTower.left
DistribMulAction.toMulAction
β€”SMulCommClass.opposite_mid
IsScalarTower.left
Module.Free.exists_basis
Module.Free.of_divisionRing
Module.Basis.mk_eq_rank''
IsNoetherianRing.strongRankCondition
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
PrincipalIdealRing.isNoetherianRing
DivisionSemiring.isPrincipalIdealRing
rank_dual_eq_card_dual_of_aleph0_le_rank'
Equiv.cardinal_eq
AddMonoid.nat_smulCommClass'
RingHomInvPair.ids
Cardinal.mk_arrow
Cardinal.cantor'
Cardinal.nat_lt_lift_iff
Cardinal.one_lt_iff_nontrivial
max_aleph0_card_le_rank_fun_nat πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
Cardinal.aleph0
Module.rank
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
Pi.Function.module
Semiring.toModule
β€”Eq.trans_le
rank_finsupp_self
IsNoetherianRing.strongRankCondition
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
PrincipalIdealRing.isNoetherianRing
DivisionSemiring.isPrincipalIdealRing
LinearMap.rank_le_of_injective
DFunLike.coe_injective
max_le
le_or_gt
LE.le.trans
Module.Free.exists_basis
Module.Free.of_divisionRing
LE.le.trans_lt
Subfield.cardinalMk_closure_le_max
max_lt_iff
Cardinal.mk_range_le
Cardinal.mk_prod
Cardinal.aleph0.eq_1
Cardinal.lift_uzero
Module.Basis.mk_eq_rank''
Cardinal.mul_aleph0_eq
Mathlib.Tactic.Contrapose.contrapose₁
Equiv.cardinal_eq
RingHomInvPair.ids
Cardinal.lt_aleph0_iff_finite
Cardinal.mk_finsupp_of_fintype
Cardinal.power_nat_le
LT.lt.le
Cardinal.power_lt_aleph0
Cardinal.natCast_lt_aleph0
Cardinal.lift_mk_le'
LE.le.trans_eq
Module.Basis.linearCombination_repr
Subfield.subset_closure
LinearIndependent.cardinal_lift_le_rank
MulOpposite.instNontrivial
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
LT.lt.not_ge
rank_fun'
LinearEquiv.rank_eq
not_linearIndependent_iff
linearIndependent_iff'
LinearIndependent.comp
Module.Basis.linearIndependent
Function.Embedding.injective
Finset.sum_congr
Finsupp.sum.eq_1
Finsupp.linearCombination_apply
Finset.sum_apply
Finset.smul_sum
Finset.sum_comm
Finset.sum_eq_zero
mul_assoc
SMulCommClass.smul_comm
map_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
smul_zero
rank_dual_eq_card_dual_of_aleph0_le_rank πŸ“–mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semiring.toModule
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”Algebra.to_smulCommClass
Module.Free.exists_basis
Module.Free.of_divisionRing
RingHomInvPair.ids
LinearEquiv.rank_eq
Equiv.cardinal_eq
rank_fun_infinite
Cardinal.aleph0_le_mk_iff
Module.Basis.mk_eq_rank''
IsNoetherianRing.strongRankCondition
EuclideanDomain.toNontrivial
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
rank_dual_eq_card_dual_of_aleph0_le_rank' πŸ“–mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
Module.rank
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
MulOpposite
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
Semiring.toModule
MulOpposite.instSemiring
LinearMap.addCommMonoid
LinearMap.module
Semiring.toOppositeModule
SMulCommClass.opposite_mid
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Module.toDistribMulAction
IsScalarTower.left
DistribMulAction.toMulAction
β€”SMulCommClass.opposite_mid
IsScalarTower.left
Module.Free.exists_basis
Module.Free.of_divisionRing
RingHomInvPair.ids
RingHomCompTriple.ids
LinearEquiv.rank_eq
Equiv.cardinal_eq
rank_fun_infinite
Cardinal.aleph0_le_mk_iff
Module.Basis.mk_eq_rank''
IsNoetherianRing.strongRankCondition
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
PrincipalIdealRing.isNoetherianRing
DivisionSemiring.isPrincipalIdealRing
rank_fun_infinite πŸ“–mathematicalβ€”Module.rank
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
Pi.Function.module
Semiring.toModule
β€”Module.Free.exists_basis
Module.Free.of_divisionRing
Cardinal.lift_mk_le'
LE.le.trans_eq
Cardinal.aleph0_le_mk_iff
Cardinal.lift_uzero
LinearMap.lift_rank_le_of_injective
LinearMap.funLeft_injective_of_surjective
Function.invFun_surjective
Function.Embedding.injective
LE.le.trans
Cardinal.lift_le
max_aleph0_card_le_rank_fun_nat
Cardinal.lift_id'
Cardinal.lift_umax
Equiv.cardinal_eq
RingHomInvPair.ids
Cardinal.mk_finsupp_lift_of_infinite
Module.Basis.mk_eq_rank''
IsNoetherianRing.strongRankCondition
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
PrincipalIdealRing.isNoetherianRing
DivisionSemiring.isPrincipalIdealRing
max_le_iff
Cardinal.lift_aleph0
Cardinal.lift_max
max_eq_left
rank_lt_rank_dual πŸ“–mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semiring.toModule
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”Algebra.to_smulCommClass
Cardinal.lift_id
lift_rank_lt_rank_dual
rank_lt_rank_dual' πŸ“–mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
Module.rank
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
MulOpposite
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
Semiring.toModule
MulOpposite.instSemiring
LinearMap.addCommMonoid
LinearMap.module
Semiring.toOppositeModule
SMulCommClass.opposite_mid
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Module.toDistribMulAction
IsScalarTower.left
DistribMulAction.toMulAction
β€”SMulCommClass.opposite_mid
IsScalarTower.left
Cardinal.lift_id
lift_rank_lt_rank_dual'

---

← Back to Index