Documentation Verification Report

Finite

πŸ“ Source: Mathlib/LinearAlgebra/Dimension/Finite.lean

Statistics

MetricCount
DefinitionsfintypeIndexOfRankLtAleph0, fintypeNeBotOfFiniteDimensional
2
TheoremscardinalMk_le_finrank, finite, finrank_eq_zero_of_infinite, finset_card_le_finrank, fintype_card_le_finrank, lt_aleph0_of_finite, setFinite, finite_index_of_rank_lt_aleph0, nonempty_fintype_index_of_rank_lt_aleph0, not_linearIndependent_of_infinite, exists_nontrivial_relation_of_finrank_lt_card, exists_nontrivial_relation_sum_zero_of_finrank_succ_lt_card, finite_finsupp_iff, finite_finsupp_self_iff, finite_of_rank_eq_nat, finite_of_rank_eq_one, finite_of_rank_eq_zero, finrank_eq_zero_iff, finrank_eq_zero_of_rank_eq_zero, finrank_pos, finrank_pos_iff, finrank_pos_iff_exists_ne_zero, finrank_quotient_add_finrank_le, finrank_zero_iff, finrank_zero_of_subsingleton, nontrivial_of_finrank_eq_succ, nontrivial_of_finrank_pos, finrank_empty, bot_eq_top_of_rank_eq_zero, finrank_eq_zero, one_le_finrank_iff, rank_eq_zero, exists_finset_linearIndependent_of_le_finrank, exists_finset_linearIndependent_of_le_rank, exists_linearIndependent_of_le_finrank, exists_linearIndependent_of_le_rank, exists_mem_ne_zero_of_rank_pos, exists_set_linearIndependent_of_lt_rank, finrank_bot, finrank_eq_one, finrank_eq_zero_of_basis_imp_false, finrank_eq_zero_of_basis_imp_not_finite, finrank_eq_zero_of_not_exists_basis, finrank_eq_zero_of_not_exists_basis_finite, finrank_eq_zero_of_not_exists_basis_finset, finrank_le_one, subtype_ne_bot_le_finrank, subtype_ne_bot_le_finrank_aux, subtype_ne_bot_le_rank, linearIndependent_bounded_of_finset_linearIndependent_bounded, natCast_le_rank_iff, natCast_le_rank_iff_finset, rank_eq_one, rank_eq_zero_iff, rank_le, rank_le_one, rank_pos, rank_pos_iff_exists_ne_zero, rank_pos_iff_nontrivial, rank_zero_iff, rank_zero_iff_forall_zero
61
Total63

LinearIndependent

Theorems

NameKindAssumesProvesValidatesDepends On
cardinalMk_le_finrank πŸ“–mathematicalLinearIndependentCardinal
Cardinal.instLE
Cardinal.instNatCast
Module.finrank
β€”Cardinal.lift_le
Cardinal.lift_natCast
cardinal_lift_le_rank
nontrivial_of_invariantBasisNumber
invariantBasisNumber_of_rankCondition
rankCondition_of_strongRankCondition
finite πŸ“–mathematicalLinearIndependentFiniteβ€”Cardinal.lt_aleph0_iff_finite
lt_aleph0_of_finite
finrank_eq_zero_of_infinite πŸ“–mathematicalLinearIndependentModule.finrankβ€”Cardinal.toNat_eq_zero
aleph0_le_rank
finset_card_le_finrank πŸ“–mathematicalLinearIndependent
Finset
SetLike.instMembership
Finset.instSetLike
Finset.card
Module.finrank
β€”Fintype.card_coe
fintype_card_le_finrank
fintype_card_le_finrank πŸ“–mathematicalLinearIndependentFintype.card
Module.finrank
β€”Cardinal.mk_fintype
Cardinal.addLeftMono
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
Cardinal.instCharZero
cardinalMk_le_finrank
lt_aleph0_of_finite πŸ“–mathematicalLinearIndependentCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.aleph0
β€”Cardinal.lift_lt
lt_of_le_of_lt
cardinal_lift_le_rank
nontrivial_of_invariantBasisNumber
invariantBasisNumber_of_rankCondition
rankCondition_of_strongRankCondition
Module.finrank_eq_rank
Cardinal.lift_aleph0
Cardinal.lift_natCast
Cardinal.natCast_lt_aleph0
setFinite πŸ“–mathematicalLinearIndependent
Set.Elem
Set
Set.instMembership
Set.Finiteβ€”Cardinal.lt_aleph0_iff_set_finite
lt_aleph0_of_finite

Module

Theorems

NameKindAssumesProvesValidatesDepends On
exists_nontrivial_relation_of_finrank_lt_card πŸ“–mathematicalfinrank
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Finset.card
Finset.sum
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
toDistribMulAction
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Finset
Finset.instMembership
β€”Fintype.not_linearIndependent_iff
LinearIndependent.finset_card_le_finrank
LT.lt.not_ge
Finset.sum_finset_coe
Finset.sum_congr
Function.Injective.extend_apply
Subtype.val_injective
exists_nontrivial_relation_sum_zero_of_finrank_succ_lt_card πŸ“–mathematicalfinrank
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Finset.card
Finset.sum
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
toDistribMulAction
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Finset
Finset.instMembership
β€”Finset.card_pos
LT.lt.trans
sub_left_injective
Finset.card_map
Finset.card_erase_of_mem
exists_nontrivial_relation_of_finrank_lt_card
Finset.sum_congr
Finset.sum_erase_add
neg_smul
Finset.sum_smul
Finset.sum_map
smul_sub
Finset.mem_erase
Finset.mem_map
finite_finsupp_iff πŸ“–mathematicalβ€”Finite
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddCommMonoid
Finsupp.module
IsEmpty
Finite
β€”Finite.of_surjective
RingHomSurjective.ids
Finsupp.apply_surjective
finite_of_span_finite_eq_top_finsupp
Finset.finite_toSet
IsNoetherian.finite
isNoetherian_of_finite
Finite.of_fintype
Finite.finsupp
finite_finsupp_self_iff πŸ“–mathematicalβ€”Finite
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
Finite
β€”Finite.of_subsingleton
IsEmpty.instSubsingleton
finite_of_rank_eq_nat πŸ“–mathematicalrank
Cardinal
Cardinal.instNatCast
Finiteβ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
IsNoetherian.finite
isNoetherian_of_subsingleton
Free.exists_basis
Cardinal.mk_lt_aleph0_iff
LE.le.trans_lt
LE.le.trans_eq
LinearIndependent.cardinal_le_rank
Basis.linearIndependent
Cardinal.natCast_lt_aleph0
Finite.of_basis
finite_of_rank_eq_one πŸ“–mathematicalrank
Cardinal
Cardinal.instOne
Finiteβ€”finite_of_rank_eq_nat
Nat.cast_one
finite_of_rank_eq_zero πŸ“–mathematicalrank
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Cardinal
Cardinal.instZero
Finiteβ€”IsNoetherian.finite
isNoetherian_of_finite
Finite.of_subsingleton
rank_zero_iff
finrank_eq_zero_iff πŸ“–mathematicalβ€”finrank
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
toDistribMulAction
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”rank_eq_zero_iff
finrank_eq_rank
Nat.cast_zero
Cardinal.instCharZero
finrank_eq_zero_of_rank_eq_zero πŸ“–mathematicalrank
Cardinal
Cardinal.instZero
finrankβ€”Cardinal.zero_toNat
finrank_pos πŸ“–mathematicalβ€”finrank
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”finrank_pos_iff
finrank_pos_iff πŸ“–mathematicalβ€”finrank
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Nontrivial
β€”rank_pos_iff_nontrivial
finrank_eq_rank
Nat.cast_zero
Cardinal.addLeftMono
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
Cardinal.instCharZero
finrank_pos_iff_exists_ne_zero πŸ“–mathematicalβ€”finrank
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”rank_pos_iff_exists_ne_zero
finrank_eq_rank
Nat.cast_zero
Cardinal.addLeftMono
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
Cardinal.instCharZero
finrank_quotient_add_finrank_le πŸ“–mathematicalβ€”finrank
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
β€”rank_quotient_add_rank_le
nontrivial_of_invariantBasisNumber
invariantBasisNumber_of_rankCondition
rankCondition_of_strongRankCondition
Cardinal.addLeftMono
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
Cardinal.instCharZero
Submodule.finrank_eq_rank
finrank_eq_rank
Finite.quotient
finrank_zero_iff πŸ“–mathematicalβ€”finrank
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”rank_zero_iff
finrank_eq_rank
Nat.cast_zero
Cardinal.instCharZero
finrank_zero_of_subsingleton πŸ“–mathematicalβ€”finrankβ€”finrank.eq_1
rank_subsingleton'
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
nontrivial_of_finrank_eq_succ πŸ“–mathematicalfinrankNontrivialβ€”nontrivial_of_finrank_pos
nontrivial_of_finrank_pos πŸ“–mathematicalfinrankNontrivialβ€”Mathlib.Tactic.Contrapose.contrapose₁
Eq.le
finrank_zero_of_subsingleton

Module.Basis

Definitions

NameCategoryTheorems
fintypeIndexOfRankLtAleph0 πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
finite_index_of_rank_lt_aleph0 πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Module.rank
Cardinal.aleph0
Set.Finiteβ€”Set.finite_def
nonempty_fintype_index_of_rank_lt_aleph0
nonempty_fintype_index_of_rank_lt_aleph0 πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Module.rank
Cardinal.aleph0
Fintypeβ€”Cardinal.lt_aleph0_iff_fintype
Cardinal.lift_lt_aleph0
Cardinal.lift_aleph0
mk_eq_rank
Cardinal.lift_lt

Module.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
not_linearIndependent_of_infinite πŸ“–mathematicalβ€”LinearIndependentβ€”LinearIndependent.finite
not_finite

Set

Theorems

NameKindAssumesProvesValidatesDepends On
finrank_empty πŸ“–mathematicalβ€”finrank
Set
instEmptyCollection
β€”finrank.eq_1
Submodule.span_empty
finrank_bot

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
bot_eq_top_of_rank_eq_zero πŸ“–mathematicalModule.rank
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Cardinal
Cardinal.instZero
Bot.bot
Submodule
instBot
Top.top
instTop
β€”Unique.instSubsingleton
rank_zero_iff
finrank_eq_zero πŸ“–mathematicalβ€”Module.finrank
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
addCommMonoid
module
Bot.bot
instBot
β€”rank_eq_zero
Module.finrank_eq_rank
Nat.cast_zero
Cardinal.instCharZero
one_le_finrank_iff πŸ“–mathematicalβ€”Module.finrank
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
addCommMonoid
module
β€”Mathlib.Tactic.Contrapose.contrapose_iff₃
finrank_eq_zero
rank_eq_zero πŸ“–mathematicalβ€”Module.rank
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
addCommMonoid
module
Cardinal
Cardinal.instZero
Bot.bot
instBot
β€”eq_bot_iff
bot_eq_top_of_rank_eq_zero
Ideal.instIsTorsionFreeSubtypeMemSubmodule
mem_top
rank_bot
IsDomain.toNontrivial

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_finset_linearIndependent_of_le_finrank πŸ“–mathematicalModule.finrankFinset.card
LinearIndependent
Finset
SetLike.instMembership
Finset.instSetLike
β€”le_zero_iff
LE.le.trans_eq
linearIndependent_empty
exists_finset_linearIndependent_of_le_rank
Nat.cast_le
Cardinal.addLeftMono
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
Cardinal.instCharZero
Cardinal.cast_toNat_of_lt_aleph0
Cardinal.toNat_ne_zero
exists_finset_linearIndependent_of_le_rank πŸ“–mathematicalCardinal
Cardinal.instLE
Cardinal.instNatCast
Module.rank
Finset.card
LinearIndepOn
SetLike.coe
Finset
Finset.instSetLike
β€”LE.le.eq_or_lt
Cardinal.exists_eq_natCast_of_iSup_eq
nonempty_linearIndependent_set
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
Module.rank_def
Cardinal.lt_aleph0_iff_finite
Cardinal.natCast_lt_aleph0
nonempty_fintype
Set.toFinset_card
Cardinal.mk_fintype
Cardinal.instCharZero
Set.coe_toFinset
exists_set_linearIndependent_of_lt_rank
exists_linearIndependent_of_le_finrank πŸ“–mathematicalModule.finrankLinearIndependentβ€”exists_finset_linearIndependent_of_le_finrank
linearIndependent_equiv
exists_linearIndependent_of_le_rank πŸ“–mathematicalCardinal
Cardinal.instLE
Cardinal.instNatCast
Module.rank
LinearIndependentβ€”exists_finset_linearIndependent_of_le_rank
linearIndependent_equiv
exists_mem_ne_zero_of_rank_pos πŸ“–β€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instZero
Module.rank
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
β€”β€”Submodule.exists_mem_ne_zero_of_ne_bot
lt_irrefl
rank_bot
exists_set_linearIndependent_of_lt_rank πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Module.rank
Set.Elem
LinearIndepOn
β€”exists_lt_of_lt_ciSup'
LT.lt.trans_eq
Module.rank_def
Cardinal.le_mk_iff_exists_subset
LT.lt.le
LinearIndepOn.mono
finrank_bot πŸ“–mathematicalβ€”Module.finrank
Submodule
SetLike.instMembership
Submodule.setLike
Bot.bot
Submodule.instBot
Submodule.addCommMonoid
Submodule.module
β€”Module.finrank_eq_of_rank_eq
rank_bot
finrank_eq_one πŸ“–mathematicalSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Module.finrankβ€”Module.finrank_eq_of_rank_eq
rank_eq_one
finrank_eq_zero_of_basis_imp_false πŸ“–mathematicalβ€”Module.finrankβ€”finrank_eq_zero_of_basis_imp_not_finite
Set.Finite.coe_toFinset
finrank_eq_zero_of_basis_imp_not_finite πŸ“–mathematicalSet.FiniteModule.finrankβ€”subsingleton_or_nontrivial
Module.subsingleton
Unique.instSubsingleton
Set.instIsEmptyElemEmptyCollection
Set.finite_empty
Module.free_iff_set
Set.Infinite.to_subtype
LinearIndependent.finrank_eq_zero_of_infinite
Module.Basis.linearIndependent
finrank_eq_zero_of_not_exists_basis πŸ“–mathematicalModule.Basis
Set.Elem
SetLike.coe
Finset
Finset.instSetLike
Module.finrankβ€”finrank_eq_zero_of_basis_imp_false
finrank_eq_zero_of_not_exists_basis_finite πŸ“–mathematicalSet.FiniteModule.finrankβ€”finrank_eq_zero_of_basis_imp_not_finite
finrank_eq_zero_of_not_exists_basis_finset πŸ“–mathematicalModule.Basis
Finset
SetLike.instMembership
Finset.instSetLike
Module.finrankβ€”finrank_eq_zero_of_basis_imp_false
finrank_le_one πŸ“–mathematicalSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Module.finrankβ€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
Module.finrank.eq_1
Cardinal.toNat_le_toNat
rank_le_one
Cardinal.one_lt_aleph0
linearIndependent_bounded_of_finset_linearIndependent_bounded πŸ“–mathematicalFinset.card
LinearIndependent
Set
Set.instMembership
Cardinal
Cardinal.instLE
Set.Elem
Cardinal.instNatCast
β€”Cardinal.card_le_of
Finset.card_map
linearIndependent_finset_map_embedding_subtype
natCast_le_rank_iff πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Cardinal.instNatCast
Module.rank
LinearIndependent
β€”exists_linearIndependent_of_le_rank
Cardinal.mk_fintype
Fintype.card_fin
Cardinal.lift_natCast
Cardinal.lift_uzero
LinearIndependent.cardinal_lift_le_rank
natCast_le_rank_iff_finset πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Cardinal.instNatCast
Module.rank
Finset.card
LinearIndependent
Finset
SetLike.instMembership
Finset.instSetLike
β€”exists_finset_linearIndependent_of_le_rank
Cardinal.mk_fintype
Fintype.card_coe
LinearIndependent.cardinal_le_rank
rank_eq_one πŸ“–mathematicalSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Module.rank
Cardinal
Cardinal.instOne
β€”Module.Basis.basis_singleton_iff
rank_eq_card_basis
Fintype.card_punit
Nat.cast_one
rank_eq_zero_iff πŸ“–mathematicalβ€”Module.rank
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Cardinal
Cardinal.instZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
rank_subsingleton
NeZero.charZero_one
Cardinal.instCharZero
Unique.instSubsingleton
Zero.instNonempty
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_eq
Cardinal.one_le_iff_ne_zero
linearIndependent_iff
Finsupp.unique_ext
Finsupp.linearCombination_unique
Cardinal.mk_fintype
Fintype.card_unique
Nat.cast_one
Cardinal.lift_one
Cardinal.lift_uzero
LinearIndependent.cardinal_lift_le_rank
nonpos_iff_eq_zero
Cardinal.canonicallyOrderedAdd
Module.rank_def
ciSup_le'
Cardinal.mk_eq_zero_iff
not_nonempty_iff
Finsupp.single_eq_same
DFunLike.congr_fun
Finsupp.linearCombination_single
rank_le πŸ“–mathematicalFinset.cardCardinal
Cardinal.instLE
Module.rank
Cardinal.instNatCast
β€”Module.rank_def
ciSup_le'
linearIndependent_bounded_of_finset_linearIndependent_bounded
rank_le_one πŸ“–mathematicalSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Cardinal
Cardinal.instLE
Module.rank
Cardinal.instOne
β€”Module.rank_self
Cardinal.lift_one
LinearMap.lift_rank_le_of_surjective
rank_pos πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instZero
Module.rank
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”rank_pos_iff_nontrivial
rank_pos_iff_exists_ne_zero πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instZero
Module.rank
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
nonpos_iff_eq_zero
Cardinal.canonicallyOrderedAdd
rank_zero_iff_forall_zero
rank_pos_iff_nontrivial πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instZero
Module.rank
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Nontrivial
β€”rank_pos_iff_exists_ne_zero
nontrivial_iff_exists_ne
rank_zero_iff πŸ“–mathematicalβ€”Module.rank
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Cardinal
Cardinal.instZero
β€”rank_zero_iff_forall_zero
rank_zero_iff_forall_zero πŸ“–mathematicalβ€”Module.rank
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Cardinal
Cardinal.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”IsDomain.toIsCancelMulZero
exists_ne
IsDomain.toNontrivial

iSupIndep

Definitions

NameCategoryTheorems
fintypeNeBotOfFiniteDimensional πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
subtype_ne_bot_le_finrank πŸ“–mathematicaliSupIndep
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.completeLattice
Fintype.card
Bot.bot
Submodule.instBot
Module.finrank
β€”Cardinal.mk_fintype
Cardinal.addLeftMono
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
Cardinal.instCharZero
subtype_ne_bot_le_finrank_aux
subtype_ne_bot_le_finrank_aux πŸ“–mathematicaliSupIndep
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.completeLattice
Cardinal
Cardinal.instLE
Bot.bot
Submodule.instBot
Cardinal.instNatCast
Module.finrank
β€”subtype_ne_bot_le_rank
Module.finrank_eq_rank
Cardinal.lift_natCast
Cardinal.lift_le
subtype_ne_bot_le_rank πŸ“–mathematicaliSupIndep
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.completeLattice
Cardinal
Cardinal.instLE
Cardinal.lift
Bot.bot
Submodule.instBot
Module.rank
β€”Submodule.ne_bot_iff
Subtype.prop
linearIndependent
comp
Subtype.coe_injective
LinearIndependent.cardinal_lift_le_rank
IsDomain.toNontrivial

---

← Back to Index