Documentation Verification Report

Free

πŸ“ Source: Mathlib/LinearAlgebra/Dimension/Free.lean

Statistics

MetricCount
DefinitionsofFinrankEq, ofLiftRankEq, ofRankEq, smul_id_of_finrank_eq_one, basisUnique, finBasis, finBasisOfFinrankEq
7
TheoremsinstFiniteOfIsQuadraticExtension, nonempty_linearEquiv_iff_finrank_eq, nonempty_linearEquiv_of_finrank_eq, nonempty_equiv_iff_lift_rank_eq, nonempty_equiv_iff_rank_eq, smul_id_of_finrank_eq_one_apply, existsUnique_eq_smul_id_of_finrank_eq_one, nonempty_unique_index_of_finrank_eq_one, rank_eq_card_chooseBasisIndex, rank_eq_mk_of_infinite_lt, basisUnique_repr_eq_zero_iff, finite_iff_of_rank_eq_nsmul, finite_of_finrank_eq_succ, finite_of_finrank_pos, finrank_bot_le_finrank_of_isScalarTower_of_free, finrank_eq_card_chooseBasisIndex, finrank_mul_finrank, finrank_of_not_finite, finrank_top_le_finrank_of_isScalarTower_of_free, nonempty_linearEquiv_of_finrank_eq_one, rank_lt_aleph0_iff, subsingleton_of_rank_zero, lift_rank_mul_lift_rank, nonempty_linearEquiv_of_lift_rank_eq, nonempty_linearEquiv_of_rank_eq, rank_mul_rank
26
Total33

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
instFiniteOfIsQuadraticExtension πŸ“–mathematicalβ€”Module.Finite
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
β€”Module.finite_of_finrank_eq_succ
IsQuadraticExtension.toFree
IsQuadraticExtension.finrank_eq_two

FiniteDimensional

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_linearEquiv_iff_finrank_eq πŸ“–mathematicalβ€”LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Module.finrank
β€”RingHomInvPair.ids
LinearEquiv.finrank_eq
nonempty_linearEquiv_of_finrank_eq
nonempty_linearEquiv_of_finrank_eq πŸ“–mathematicalModule.finrankLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
β€”nonempty_linearEquiv_of_lift_rank_eq
Cardinal.lift_natCast

LinearEquiv

Definitions

NameCategoryTheorems
ofFinrankEq πŸ“–CompOpβ€”
ofLiftRankEq πŸ“–CompOpβ€”
ofRankEq πŸ“–CompOpβ€”
smul_id_of_finrank_eq_one πŸ“–CompOp
1 mathmath: smul_id_of_finrank_eq_one_apply

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_equiv_iff_lift_rank_eq πŸ“–mathematicalβ€”LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Cardinal.lift
Module.rank
β€”RingHomInvPair.ids
lift_rank_eq
nonempty_linearEquiv_of_lift_rank_eq
nonempty_equiv_iff_rank_eq πŸ“–mathematicalβ€”LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Module.rank
β€”RingHomInvPair.ids
rank_eq
nonempty_linearEquiv_of_rank_eq
smul_id_of_finrank_eq_one_apply πŸ“–mathematicalModule.finrank
CommSemiring.toSemiring
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
LinearMap.addCommMonoid
Semiring.toModule
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
instEquivLike
smul_id_of_finrank_eq_one
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LinearMap.id
β€”RingHomInvPair.ids
smulCommClass_self

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
existsUnique_eq_smul_id_of_finrank_eq_one πŸ“–mathematicalModule.finrank
CommSemiring.toSemiring
ExistsUnique
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
id
β€”RingHomInvPair.ids
Module.nonempty_linearEquiv_of_finrank_eq_one
smulCommClass_self
ext
mul_one
LinearEquiv.apply_symm_apply
map_smul
SemilinearMapClass.toMulActionSemiHomClass
semilinearMapClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
LinearEquiv.symm_apply_apply
LinearEquiv.congr_arg
ext_iff

Module

Definitions

NameCategoryTheorems
basisUnique πŸ“–CompOp
2 mathmath: basisUnique_repr_eq_zero_iff, FiniteDimensional.basisSingleton_repr_apply
finBasis πŸ“–CompOpβ€”
finBasisOfFinrankEq πŸ“–CompOp
1 mathmath: AlternatingMap.measure_def

Theorems

NameKindAssumesProvesValidatesDepends On
basisUnique_repr_eq_zero_iff πŸ“–mathematicalfinrankDFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Basis.repr
basisUnique
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”RingHomInvPair.ids
LinearEquiv.map_eq_zero_iff
Finsupp.ext
Unique.instSubsingleton
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
Finsupp.zero_apply
finite_iff_of_rank_eq_nsmul πŸ“–mathematicalrank
Cardinal
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Cardinal.commSemiring
Finiteβ€”Cardinal.nsmul_lt_aleph0_iff_of_ne_zero
finite_of_finrank_eq_succ πŸ“–mathematicalfinrankFiniteβ€”finite_of_finrank_pos
finite_of_finrank_pos πŸ“–mathematicalfinrankFiniteβ€”Mathlib.Tactic.Contrapose.contrapose₁
finrank_of_not_finite
finrank_bot_le_finrank_of_isScalarTower_of_free πŸ“–mathematicalβ€”finrank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Finite.trans
finrank_bot_le_finrank_of_isScalarTower
finrank.eq_1
Cardinal.toNat_eq_zero
not_lt
rank_lt_aleph0_iff
zero_le
Nat.instCanonicallyOrderedAdd
finrank_eq_card_chooseBasisIndex πŸ“–mathematicalβ€”finrank
Fintype.card
Free.ChooseBasisIndex
Free.ChooseBasisIndex.fintype
β€”Free.rank_eq_card_chooseBasisIndex
Cardinal.mk_fintype
Cardinal.toNat_natCast
finrank_mul_finrank πŸ“–mathematicalβ€”finrank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Cardinal.toNat_lift
Cardinal.toNat_mul
lift_rank_mul_lift_rank
finrank_of_not_finite πŸ“–mathematicalFinitefinrankβ€”finrank.eq_1
Cardinal.toNat_eq_zero
not_lt
rank_lt_aleph0_iff
finrank_top_le_finrank_of_isScalarTower_of_free πŸ“–mathematicalβ€”finrankβ€”Finite.trans
finrank_top_le_finrank_of_isScalarTower
finrank.eq_1
Cardinal.toNat_eq_zero
not_lt
rank_lt_aleph0_iff
zero_le
Nat.instCanonicallyOrderedAdd
nonempty_linearEquiv_of_finrank_eq_one πŸ“–mathematicalfinrankLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”RingHomInvPair.ids
Free.exists_basis
Basis.nonempty_unique_index_of_finrank_eq_one
RingHomCompTriple.ids
Finite.of_fintype
rank_lt_aleph0_iff πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
rank
Cardinal.aleph0
Finite
β€”Free.rank_eq_card_chooseBasisIndex
Cardinal.mk_lt_aleph0_iff
Finite.of_basis
Finite.of_fintype
subsingleton_of_rank_zero πŸ“–β€”rank
Cardinal
Cardinal.instZero
β€”β€”Equiv.subsingleton
RingHomInvPair.ids
Unique.instSubsingleton
Cardinal.mk_eq_zero_iff
Basis.mk_eq_rank''

Module.Basis

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_unique_index_of_finrank_eq_one πŸ“–mathematicalModule.finrankUniqueβ€”nontrivial_of_invariantBasisNumber
invariantBasisNumber_of_rankCondition
rankCondition_of_strongRankCondition
Module.Finite.finite_basis
Module.finite_of_finrank_pos
Fintype.card_eq_one_iff_nonempty_unique
Module.finrank_eq_card_basis

Module.Free

Theorems

NameKindAssumesProvesValidatesDepends On
rank_eq_card_chooseBasisIndex πŸ“–mathematicalβ€”Module.rank
ChooseBasisIndex
β€”Module.Basis.mk_eq_rank''
rank_eq_mk_of_infinite_lt πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.lift
Module.rankβ€”Cardinal.infinite_iff
Cardinal.lift_le
le_trans
Cardinal.lift_aleph0
LT.lt.le
Cardinal.lift_mk_eq'
RingHomInvPair.ids
max_eq_iff
Cardinal.mk_finsupp_lift_of_infinite'
instNonemptyChooseBasisIndexOfNontrivial
Infinite.instNontrivial
Cardinal.lift_max
Cardinal.lift_lift
LT.lt.ne
Cardinal.lift_umax

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
lift_rank_mul_lift_rank πŸ“–mathematicalβ€”Cardinal
Cardinal.instMul
Cardinal.lift
Module.rank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Cardinal.lift_id
Module.Basis.mk_eq_rank
Cardinal.lift_umax
Cardinal.mk_prod
Cardinal.lift_mul
Cardinal.lift_lift
nonempty_linearEquiv_of_lift_rank_eq πŸ“–mathematicalCardinal.lift
Module.rank
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
β€”RingHomInvPair.ids
Module.Free.exists_basis
Module.Basis.mk_eq_rank''
Nonempty.map
Cardinal.lift_mk_eq
nonempty_linearEquiv_of_rank_eq πŸ“–mathematicalModule.rankLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
β€”nonempty_linearEquiv_of_lift_rank_eq
rank_mul_rank πŸ“–mathematicalβ€”Cardinal
Cardinal.instMul
Module.rank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Cardinal.lift_id
lift_rank_mul_lift_rank

---

← Back to Index