Documentation Verification Report

Localization

πŸ“ Source: Mathlib/LinearAlgebra/Dimension/Localization.lean

Statistics

MetricCount
Definitions0
Theoremsfinrank_eq, finrank_eq_of_le_nonZeroDivisors, lift_rank_eq, lift_rank_eq_of_le_nonZeroDivisors, rank_eq, rank_eq_of_le_nonZeroDivisors, hasRankNullity, rank_eq, finrank_eq, lift_rank_eq, rank_eq, aleph0_le_rank_of_isEmpty_oreSet, exists_set_linearIndependent_of_isDomain, nonempty_oreSet_of_strongRankCondition, rank_quotient_add_rank_of_isDomain
15
Total15

IsBaseChange

Theorems

NameKindAssumesProvesValidatesDepends On
finrank_eq πŸ“–mathematicalIsBaseChange
AddCommGroup.toAddCommMonoid
CommRing.toCommSemiring
Module.finrank
CommSemiring.toSemiring
β€”Cardinal.toNat_lift
lift_rank_eq
finrank_eq_of_le_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
Semiring.toMonoidWithZero
Algebra.algebraMapSubmonoid
IsBaseChange
AddCommGroup.toAddCommMonoid
Module.finrankβ€”Cardinal.toNat_lift
lift_rank_eq_of_le_nonZeroDivisors
lift_rank_eq πŸ“–mathematicalIsBaseChange
AddCommGroup.toAddCommMonoid
CommRing.toCommSemiring
Cardinal.lift
Module.rank
CommSemiring.toSemiring
β€”FaithfulSMul.algebraMap_injective
Function.Injective.noZeroDivisors
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
subsingleton_or_nontrivial
RingHom.codomain_trivial
rank_subsingleton
Cardinal.lift_one
isDomain_iff_noZeroDivisors_and_nontrivial
Function.Injective.nontrivial
IsFractionRing.injective
Localization.isLocalization
IsScalarTower.right
TensorProduct.smulCommClass_left
smulCommClass_self
IsLocalization.tensorProduct_isLocalizedModule
MulEquiv.isField
Field.toIsField
Algebra.TensorProduct.right_isScalarTower
isLocalizedModule_iff_isLocalization
Ne.isUnit
IsDomain.toNontrivial
map_ne_zero_of_mem_nonZeroDivisors
OreLocalization.instSMulCommClass
IsScalarTower.to_smulCommClass'
Algebra.to_smulCommClass
TensorProduct.isScalarTower_left
RingHomCompTriple.ids
LinearMap.IsScalarTower.compatibleSMul
TensorProduct.isScalarTower
OreLocalization.instIsScalarTower
comp_iff
isLocalizedModule_iff_isBaseChange
Cardinal.lift_lift
IsLocalizedModule.lift_rank_eq
le_rfl
IsLocalization.rank_eq
lift_rank_eq_of_le_nonZeroDivisors
IsScalarTower.left
OreLocalization.instIsScalarTower_1
localizedModuleIsLocalizedModule
Module.Free.of_divisionRing
IsNoetherianRing.strongRankCondition
FractionRing.instNontrivial
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
map_le_nonZeroDivisors_of_injective
Localization.instNoZeroDivisors
EuclideanDomain.toNontrivial
lift_rank_eq_of_le_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
Semiring.toMonoidWithZero
Algebra.algebraMapSubmonoid
IsBaseChange
AddCommGroup.toAddCommMonoid
Cardinal.lift
Module.rank
β€”Cardinal.lift_lift
Algebra.to_smulCommClass
IsLocalizedModule.lift_rank_eq
IsLocalization.rank_eq
Module.rank_baseChange
Cardinal.lift_id'
Cardinal.lift_umax
TensorProduct.smulCommClass_left
smulCommClass_self
IsLocalization.tensorProduct_isLocalizedModule
IsLocalization.tensorRight
TensorProduct.isScalarTower_left
IsScalarTower.right
LinearEquiv.lift_rank_eq
IsScalarTower.to_smulCommClass
RingHomCompTriple.ids
RingHomInvPair.ids
Algebra.TensorProduct.right_isScalarTower
isLocalizedModule_iff_isBaseChange
rank_eq πŸ“–mathematicalIsBaseChange
AddCommGroup.toAddCommMonoid
CommRing.toCommSemiring
Module.rank
CommSemiring.toSemiring
β€”Cardinal.lift_id
lift_rank_eq
rank_eq_of_le_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
Semiring.toMonoidWithZero
Algebra.algebraMapSubmonoid
IsBaseChange
AddCommGroup.toAddCommMonoid
Module.rankβ€”Cardinal.lift_id
lift_rank_eq_of_le_nonZeroDivisors

IsDomain

Theorems

NameKindAssumesProvesValidatesDepends On
hasRankNullity πŸ“–mathematicalβ€”HasRankNullity
CommRing.toRing
β€”exists_set_linearIndependent_of_isDomain
rank_quotient_add_rank_of_isDomain

IsLocalization

Theorems

NameKindAssumesProvesValidatesDepends On
rank_eq πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
Semiring.toMonoidWithZero
Module.rank
AddCommGroup.toAddCommMonoid
β€”subsingleton_or_nontrivial
RingHom.codomain_trivial
rank_subsingleton
injective
le_antisymm
Module.rank_def
ciSup_le'
faithfulSMul_iff_algebraMap_injective
LinearIndependent.cardinal_le_rank
LinearIndependent.restrict_scalars'
IsScalarTower.right
Function.Injective.nontrivial
LinearIndependent.localization

IsLocalizedModule

Theorems

NameKindAssumesProvesValidatesDepends On
finrank_eq πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
Semiring.toMonoidWithZero
Module.finrank
AddCommGroup.toAddCommMonoid
β€”Cardinal.toNat_lift
lift_rank_eq
lift_rank_eq πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
Semiring.toMonoidWithZero
Cardinal.lift
Module.rank
AddCommGroup.toAddCommMonoid
β€”subsingleton_or_nontrivial
rank_subsingleton
Cardinal.lift_one
le_antisymm
Module.rank_def
Cardinal.lift_iSup
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
ciSup_le'
LinearIndependent.cardinal_lift_le_rank
linearIndependent_lift
LinearIndependent.of_isLocalizedModule_of_isRegular
le_nonZeroDivisors_iff_isRegular
rank_eq πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
Semiring.toMonoidWithZero
Module.rank
AddCommGroup.toAddCommMonoid
β€”Cardinal.lift_id
lift_rank_eq

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
aleph0_le_rank_of_isEmpty_oreSet πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Cardinal.aleph0
Module.rank
Ring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Semiring.toModule
β€”Mathlib.Tactic.Push.not_forall_eq
OreLocalization.nonempty_oreSet_iff_of_noZeroDivisors
IsDomain.to_noZeroDivisors
not_nonempty_iff
Cardinal.aleph0_le
LT.lt.not_ge
zero_le
Nat.instCanonicallyOrderedAdd
Finset.sum_congr
add_assoc
zero_smul
add_zero
Finset.sum_range_succ'
mul_right_cancelβ‚€
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
Submonoid.instSubmonoidClass
mem_nonZeroDivisors_iff_ne_zero
IsDomain.toNontrivial
Subtype.prop
neg_mul
neg_eq_iff_add_eq_zero
pow_add
pow_succ
zero_add
Fintype.linearIndependent_iff
Fin.prop
dite_mul
Cardinal.mk_fintype
Fintype.card_fin
Cardinal.lift_natCast
Cardinal.lift_uzero
LinearIndependent.cardinal_lift_le_rank
exists_set_linearIndependent_of_isDomain πŸ“–mathematicalβ€”Set.Elem
Module.rank
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearIndepOn
β€”Module.Free.of_divisionRing
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
IsLocalizedModule.linearIndependent_lift
IsScalarTower.left
IsScalarTower.right
localizedModuleIsLocalizedModule
LinearIndependent.restrict_scalars'
OreLocalization.instIsScalarTower_1
FractionRing.instFaithfulSMul
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
Module.Basis.linearIndependent
Cardinal.lift_injective
Cardinal.mk_range_eq_of_injective
LinearIndependent.injective
Module.Free.rank_eq_card_chooseBasisIndex
IsNoetherianRing.strongRankCondition
FractionRing.instNontrivial
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
IsLocalization.rank_eq
Localization.isLocalization
le_rfl
IsLocalizedModule.lift_rank_eq
linearIndepOn_id_range_iff
nonempty_oreSet_of_strongRankCondition πŸ“–mathematicalβ€”OreLocalization.OreSet
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
nonZeroDivisors
β€”aleph0_le_rank_of_isEmpty_oreSet
LE.le.not_gt
Module.rank_self
Cardinal.one_lt_aleph0
rank_quotient_add_rank_of_isDomain πŸ“–mathematicalβ€”Cardinal
Cardinal.instAdd
Module.rank
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
β€”Cardinal.lift_injective
Cardinal.lift_add
IsScalarTower.right
IsScalarTower.left
OreLocalization.instIsScalarTower_1
IsLocalizedModule.lift_rank_eq
Submodule.isLocalizedModule
Localization.isLocalization
localizedModuleIsLocalizedModule
le_rfl
instIsLocalizedModuleQuotientSubmoduleLocalizedModuleLocalizationLocalizedToLocalizedQuotient
IsLocalization.rank_eq
Submodule.Quotient.isScalarTower
Submodule.isScalarTower'
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
rank_quotient_add_rank_of_divisionRing

---

← Back to Index