Documentation Verification Report

Basic

πŸ“ Source: Mathlib/LinearAlgebra/Eigenspace/Basic.lean

Statistics

MetricCount
DefinitionsEigenvalues, val, HasEigenvalue, HasEigenvector, HasGenEigenvalue, HasGenEigenvector, HasUnifEigenvalue, HasUnifEigenvector, UnifEigenvalues, instCoeOut, val, instDecidableEq, eigenspace, genEigenrange, genEigenspace, maxGenEigenspace, maxGenEigenspaceIndex, maxUnifEigenspaceIndex
18
Theoremsmk_val, val_mk, exists_hasEigenvector, isNilpotent_of_isNilpotent, mem_spectrum, of_mem_spectrum, pow, apply_eq_smul, pow_apply, exists_hasUnifEigenvector, exp_ne_zero, isNilpotent_of_isNilpotent, le, lt, mem_spectrum, of_mem_spectrum, pow, apply_eq_smul, hasUnifEigenvalue, pow_apply, mk_val, val_mk, disjoint_genEigenspace, eigenspace_def, eigenspace_div, eigenspace_le_genEigenspace, eigenspace_le_maxGenEigenspace, eigenspace_restrict_eq_bot, eigenspace_restrict_le_eigenspace, eigenspace_zero, eigenspaces_iSupIndep, eigenvectors_linearIndependent, eigenvectors_linearIndependent', exp_ne_zero_of_hasGenEigenvalue, genEigenrange_nat, genEigenspace_directed, genEigenspace_div, genEigenspace_eq_genEigenspace_finrank_of_le, genEigenspace_eq_genEigenspace_maxUnifEigenspaceIndex_of_le, genEigenspace_eq_iSup_genEigenspace_nat, genEigenspace_inf_le_add, genEigenspace_le_genEigenspace_finrank, genEigenspace_le_genEigenspace_maxUnifEigenspaceIndex, genEigenspace_le_maximal, genEigenspace_le_smul, genEigenspace_nat, genEigenspace_one, genEigenspace_restrict, genEigenspace_top, genEigenspace_top_eq_maxUnifEigenspaceIndex, genEigenspace_zero, genEigenspace_zero_nat, generalized_eigenvec_disjoint_range_ker, hasEigenvalue_iff, hasEigenvalue_iff_mem_spectrum, hasEigenvalue_of_hasEigenvector, hasEigenvalue_of_hasGenEigenvalue, hasEigenvector_iff, hasGenEigenvalue_iff, hasGenEigenvalue_iff_hasEigenvalue, hasGenEigenvalue_of_hasEigenvalue, hasGenEigenvalue_of_hasGenEigenvalue_of_le, hasGenEigenvector_iff, hasUnifEigenvalue_iff_hasUnifEigenvalue_one, hasUnifEigenvalue_iff_mem_spectrum, iSup_genEigenspace_eq, independent_genEigenspace, independent_maxGenEigenspace, injOn_genEigenspace, injOn_maxGenEigenspace, isNilpotent_restrict_genEigenspace_nat, isNilpotent_restrict_genEigenspace_top, isNilpotent_restrict_maxGenEigenspace_sub_algebraMap, isNilpotent_restrict_sub_algebraMap, map_add_of_iInf_genEigenspace_ne_bot_of_commute, map_genEigenrange_le, map_smul_of_iInf_genEigenspace_ne_bot, mapsTo_genEigenspace_of_comm, mapsTo_maxGenEigenspace_of_comm, mapsTo_restrict_maxGenEigenspace_restrict_of_mapsTo, maxGenEigenspace_eq, maxGenEigenspace_eq_genEigenspace_finrank, maxGenEigenspace_eq_maxGenEigenspace_zero, maxUnifEigenspaceIndex_le_finrank, mem_eigenspace_iff, mem_genEigenspace, mem_genEigenspace_nat, mem_genEigenspace_one, mem_genEigenspace_top, mem_genEigenspace_zero, mem_maxGenEigenspace, pos_finrank_genEigenspace_of_hasEigenvalue, inf_genEigenspace
93
Total111

Module.End

Definitions

NameCategoryTheorems
Eigenvalues πŸ“–CompOp
7 mathmath: LinearMap.IsSymmetric.diagonalization_apply_self_apply, LinearMap.IsSymmetric.directSum_decompose_apply, LinearMap.IsSymmetric.diagonalization_symm_apply, LinearMap.IsSymmetric.orthogonalFamily_eigenspaces', LinearMap.IsSymmetric.orthogonalComplement_iSup_eigenspaces_eq_bot', LinearMap.IsSymmetric.direct_sum_isInternal, LinearMap.IsSymmetric.eigenvectorBasis_def
HasEigenvalue πŸ“–MathDef
20 mathmath: hasEigenvalue_iff, exists_eigenvalue, LinearMap.IsSymmetric.hasEigenvalue_iSup_of_finiteDimensional, hasEigenvalue_iff_isRoot_charpoly, hasEigenvalue_of_hasEigenvector, hasGenEigenvalue_iff_hasEigenvalue, LinearMap.IsSymmetric.hasEigenvalue_eigenvalues, exists_hasEigenvalue_of_genEigenspace_eq_top, LinearMap.hasEigenvalue_zero_tfae, finite_hasEigenvalue, LinearMap.IsSymmetric.hasEigenvalue_iInf_of_finiteDimensional, hasEigenvalue_iff_isRoot, hasEigenvalue_of_isRoot, hasEigenvalue_toLin'_diagonal_iff, HasEigenvalue.of_mem_spectrum, hasEigenvalue_of_hasGenEigenvalue, hasEigenvalue_iff_mem_spectrum, LinearMap.not_hasEigenvalue_zero_tfae, LieModule.Weight.hasEigenvalueAt, hasEigenvalue_toLin_diagonal_iff
HasEigenvector πŸ“–MathDef
8 mathmath: IsSelfAdjoint.hasEigenvector_of_isMaxOn, hasEigenvector_toLin'_diagonal, hasEigenvector_iff, IsSelfAdjoint.hasEigenvector_of_isMinOn, IsSelfAdjoint.hasEigenvector_of_isLocalExtrOn, HasEigenvalue.exists_hasEigenvector, LinearMap.IsSymmetric.hasEigenvector_eigenvectorBasis, hasEigenvector_toLin_diagonal
HasGenEigenvalue πŸ“–MathDef
3 mathmath: hasGenEigenvalue_iff, hasGenEigenvalue_iff_hasEigenvalue, hasGenEigenvalue_of_hasEigenvalue
HasGenEigenvector πŸ“–MathDef
1 mathmath: hasGenEigenvector_iff
HasUnifEigenvalue πŸ“–MathDef
7 mathmath: hasUnifEigenvalue_iff_mem_spectrum, Eigenvalues.mk_val, UnifEigenvalues.mk_val, HasUnifEigenvector.hasUnifEigenvalue, HasUnifEigenvalue.of_mem_spectrum, Eigenvalues.val_mk, hasUnifEigenvalue_iff_hasUnifEigenvalue_one
HasUnifEigenvector πŸ“–MathDef
1 mathmath: HasUnifEigenvalue.exists_hasUnifEigenvector
UnifEigenvalues πŸ“–CompOpβ€”
eigenspace πŸ“–CompOp
36 mathmath: Matrix.iSup_eigenspace_toLin'_diagonal_eq_top, LinearMap.IsSymmetric.diagonalization_apply_self_apply, eigenspaces_iSupIndep, LinearMap.IsSymmetric.orthogonalFamily_eigenspaces, eigenspace_restrict_le_eigenspace, LinearMap.IsSymmetric.directSum_decompose_apply, mem_eigenspace_intrinsicStar_iff, LinearMap.IsSymmetric.card_filter_eigenvalues_eq, LinearMap.IsSymmetric.diagonalization_symm_apply, eigenspace_le_genEigenspace, LinearMap.IsSymmetric.iSup_iInf_eq_top_of_commute, LinearMap.IsSymmetric.orthogonalFamily_eigenspaces', hasEigenvector_iff, LinearMap.IsSymmetric.orthogonalComplement_iSup_eigenspaces_eq_bot', LinearMap.IsSymmetric.orthogonalFamily_eigenspace_inf_eigenspace, LinearMap.IsSymmetric.orthogonalComplement_iSup_eigenspaces_eq_bot, LinearMap.IsSymmetric.directSum_isInternal_of_commute, eigenspace_def, LinearMap.IsSymmetric.direct_sum_isInternal, mem_eigenspace_iff, LinearMap.IsSymmetric.iSup_iSup_eigenspace_inf_eigenspace_eq_top_of_commute, eigenspace_div, eigenspace_le_maxGenEigenspace, eigenspace_zero, IsFinitelySemisimple.genEigenspace_eq_eigenspace, LinearMap.IsSymmetric.orthogonalComplement_iSup_eigenspaces, LinearMap.IsSymmetric.LinearMap.IsSymmetric.directSum_isInternal_of_pairwise_commute, Matrix.maxGenEigenspace_toLin_diagonal_eq_eigenspace, Matrix.iSup_eigenspace_toLin_diagonal_eq_top, Matrix.maxGenEigenspace_toLin'_diagonal_eq_eigenspace, LinearMap.IsSymmetric.iSup_eigenspace_inf_eigenspace_of_commute, LinearMap.finrank_eigenspace_le, eigenspace_aeval_polynomial_degree_1, LinearMap.IsSymmetric.orthogonalFamily_iInf_eigenspaces, IsFinitelySemisimple.maxGenEigenspace_eq_eigenspace, LinearMap.IsSymmetric.eigenvectorBasis_def
genEigenrange πŸ“–CompOp
3 mathmath: map_genEigenrange_le, genEigenrange_nat, generalized_eigenvec_disjoint_range_ker
genEigenspace πŸ“–CompOp
37 mathmath: independent_genEigenspace, genEigenspace_directed, maxGenEigenspace_eq, maxGenEigenspace_eq_genEigenspace_finrank, mapsTo_genEigenspace_of_comm, Submodule.inf_genEigenspace, genEigenspace_top_eq_maxUnifEigenspaceIndex, LinearMap.finrank_genEigenspace_le, iSup_genEigenspace_eq, genEigenspace_inf_le_add, eigenspace_le_genEigenspace, disjoint_genEigenspace, Submodule.inf_iSup_genEigenspace, genEigenspace_eq_genEigenspace_maxUnifEigenspaceIndex_of_le, mem_genEigenspace_top, injOn_genEigenspace, genEigenspace_one, genEigenspace_eq_iSup_genEigenspace_nat, genEigenspace_le_genEigenspace_maxUnifEigenspaceIndex, genEigenspace_zero_nat, genEigenspace_top, generalized_eigenvec_disjoint_range_ker, mem_genEigenspace_one, IsFinitelySemisimple.genEigenspace_eq_eigenspace, genEigenspace_div, genEigenspace_eq_genEigenspace_finrank_of_le, genEigenspace_nat, genEigenspace_le_maximal, mem_genEigenspace_nat, hasGenEigenvector_iff, mem_genEigenspace_zero, genEigenspace_le_genEigenspace_finrank, mem_genEigenspace, genEigenspace_zero, genEigenspace_le_smul, genEigenspace_restrict, pos_finrank_genEigenspace_of_hasEigenvalue
maxGenEigenspace πŸ“–CompOp
24 mathmath: maxGenEigenspace_eq, maxGenEigenspace_eq_genEigenspace_finrank, maxGenEigenspace_eq_maxGenEigenspace_zero, LieModule.weight_vector_multiplication, iSup_genEigenspace_eq, LieModule.IsTriangularizable.maxGenEigenspace_eq_top, disjoint_iInf_maxGenEigenspace, injOn_maxGenEigenspace, mem_iInf_maxGenEigenspace_iff, LinearMap.finrank_maxGenEigenspace, eigenspace_le_maxGenEigenspace, mapsTo_maxGenEigenspace_of_comm, independent_maxGenEigenspace, mem_maxGenEigenspace, LieModule.maxGenEigenSpace_toEnd_eq_top, Submodule.inf_iInf_maxGenEigenspace_of_forall_mapsTo, LinearMap.finrank_maxGenEigenspace_zero_eq, genEigenspace_le_maximal, iSup_maxGenEigenspace_eq_top, Matrix.maxGenEigenspace_toLin_diagonal_eq_eigenspace, LinearMap.finrank_maxGenEigenspace_eq, Matrix.maxGenEigenspace_toLin'_diagonal_eq_eigenspace, IsFinitelySemisimple.maxGenEigenspace_eq_eigenspace, injOn_iInf_maxGenEigenspace
maxGenEigenspaceIndex πŸ“–CompOp
1 mathmath: maxGenEigenspace_eq
maxUnifEigenspaceIndex πŸ“–CompOp
3 mathmath: genEigenspace_top_eq_maxUnifEigenspaceIndex, maxUnifEigenspaceIndex_le_finrank, genEigenspace_le_genEigenspace_maxUnifEigenspaceIndex

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_genEigenspace πŸ“–mathematicalβ€”Disjoint
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
Submodule.instOrderBot
DFunLike.coe
OrderHom
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderHom.instFunLike
genEigenspace
β€”genEigenspace_eq_iSup_genEigenspace_nat
Directed.disjoint_iSup_left
Submodule.instIsCompactlyGenerated
genEigenspace_directed
Directed.disjoint_iSup_right
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
disjoint_iff
Submodule.nontrivial_iff_ne_bot
smulCommClass_self
IsScalarTower.left
Set.MapsTo.inter_inter
mapsTo_genEigenspace_of_comm
Algebra.mul_sub_algebraMap_commutes
Commute.isNilpotent_sub
LinearMap.ext
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
smul_sub
sub_sub
add_sub_left_comm
SMulCommClass.smul_comm
isNilpotent_restrict_of_le
inf_le_right
isNilpotent_restrict_genEigenspace_nat
inf_le_left
Submodule.isScalarTower'
sub_sub_sub_cancel_left
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
sub_eq_zero
isNilpotent_iff_eq_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
IsNilpotent.map_iff
RingHomClass.toMonoidWithZeroHomClass
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
instNontrivial
LinearMap.instIsTorsionFree
Ideal.instIsTorsionFreeSubtypeMemSubmodule
eigenspace_def πŸ“–mathematicalβ€”eigenspace
LinearMap.ker
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
Module.End
LinearMap
LinearMap.instSub
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
instOne
β€”smulCommClass_self
eigenspace.eq_1
genEigenspace_one
eigenspace_div πŸ“–mathematicalβ€”eigenspace
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
LinearMap.ker
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
Module.End
LinearMap.instSub
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
DFunLike.coe
RingHom
CommSemiring.toSemiring
Semifield.toCommSemiring
instSemiring
RingHom.instFunLike
algebraMap
instAlgebra
Algebra.toSMul
Algebra.id
IsScalarTower.left
β€”genEigenspace_div
eigenspace_le_genEigenspace πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
eigenspace
DFunLike.coe
OrderHom
ENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderHom.instFunLike
genEigenspace
ENat.instNatCast
β€”OrderHom.monotone
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
zero_add
eigenspace_le_maxGenEigenspace πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
eigenspace
maxGenEigenspace
β€”OrderHom.monotone
OrderTop.le_top
eigenspace_restrict_eq_bot πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
DFunLike.coe
Module.End
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
Disjoint
Submodule.instPartialOrder
Submodule.instOrderBot
eigenspace
Submodule.addCommGroup
CommRing.toRing
Submodule.module
LinearMap.restrict
Bot.bot
Submodule.instBot
β€”eq_bot_iff
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
Disjoint.le_bot
eigenspace_restrict_le_eigenspace
Subtype.prop
eigenspace_restrict_le_eigenspace πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
DFunLike.coe
Module.End
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.map
Submodule.addCommMonoid
Submodule.module
RingHomSurjective.ids
Submodule.subtype
eigenspace
Submodule.addCommGroup
CommRing.toRing
LinearMap.restrict
β€”RingHomSurjective.ids
eigenspace_zero πŸ“–mathematicalβ€”eigenspace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
LinearMap.ker
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
β€”Nat.cast_one
genEigenspace_zero_nat
pow_one
eigenspaces_iSupIndep πŸ“–mathematicalβ€”iSupIndep
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.completeLattice
eigenspace
β€”independent_genEigenspace
eigenvectors_linearIndependent πŸ“–mathematicalHasEigenvector
Set
Set.instMembership
LinearIndependent
Set.Elem
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”eigenvectors_linearIndependent'
Subtype.coe_injective
eigenvectors_linearIndependent' πŸ“–mathematicalHasEigenvectorLinearIndependent
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”iSupIndep.linearIndependent
iSupIndep.comp
eigenspaces_iSupIndep
exp_ne_zero_of_hasGenEigenvalue πŸ“–β€”HasGenEigenvalueβ€”β€”HasUnifEigenvalue.exp_ne_zero
genEigenrange_nat πŸ“–mathematicalβ€”genEigenrange
ENat
ENat.instNatCast
LinearMap.range
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Module.End
LinearMap
Monoid.toNatPow
instMonoid
LinearMap.instSub
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
instOne
β€”Submodule.ext
RingHomSurjective.ids
smulCommClass_self
iInf_congr_Prop
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
le_rfl
pow_add
genEigenspace_directed πŸ“–mathematicalβ€”Directed
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
Submodule.instPartialOrder
DFunLike.coe
OrderHom
OrderHom.instFunLike
genEigenspace
β€”IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Monotone.directed_le
SemilatticeSup.instIsDirectedOrder
Monotone.comp
OrderHom.monotone
genEigenspace_div πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
ENat
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instCommSemiringENat
LinearMap.ker
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Module.End
LinearMap
LinearMap.instSub
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
instOne
β€”smulCommClass_self
div_eq_mul_inv
mul_comm
genEigenspace_one
smul_smul
LinearMap.ker_smul
smul_sub
smul_inv_smulβ‚€
genEigenspace_eq_genEigenspace_finrank_of_le πŸ“–mathematicalModule.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
DFunLike.coe
OrderHom
ENat
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
ENat.instNatCast
β€”le_antisymm
genEigenspace_le_genEigenspace_finrank
OrderHom.monotone
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
genEigenspace_eq_genEigenspace_maxUnifEigenspaceIndex_of_le πŸ“–mathematicalmaxUnifEigenspaceIndexDFunLike.coe
OrderHom
ENat
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
ENat.instNatCast
β€”le_antisymm
genEigenspace_le_genEigenspace_maxUnifEigenspaceIndex
OrderHom.monotone
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
genEigenspace_eq_iSup_genEigenspace_nat πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
ENat
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
iSup
Preorder.toLE
ENat.instNatCast
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
β€”smulCommClass_self
genEigenspace_nat
iSup_subtype
iSup_congr_Prop
genEigenspace_inf_le_add πŸ“–mathematicalCommute
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instMul
Submodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.instMin
DFunLike.coe
OrderHom
ENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderHom.instFunLike
genEigenspace
LinearMap.instAdd
RingHom.id
Semiring.toNonAssocSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonAssocSemiring.toNonUnitalNonAssocSemiring
instCommSemiringENat
β€”smulCommClass_self
add_smul
add_sub_add_comm
Commute.sub_left
IsScalarTower.left
Commute.sub_right
Algebra.commute_algebraMap_right
Algebra.commute_algebraMap_left
Commute.add_pow'
LinearMap.coe_sum
Finset.sum_apply
Nat.cast_add
add_le_add
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Finset.sum_eq_zero
Finset.HasAntidiagonal.mem_antidiagonal
Commute.eq
Commute.pow_pow
mul_apply
pow_map_zero_of_le
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
AddMonoid.nat_smulCommClass'
LinearMap.smul_apply
smul_zero
genEigenspace_le_genEigenspace_finrank πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
DFunLike.coe
OrderHom
ENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderHom.instFunLike
genEigenspace
ENat.instNatCast
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”OrderHom.monotone
le_top
genEigenspace_top_eq_maxUnifEigenspaceIndex
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
maxUnifEigenspaceIndex_le_finrank
genEigenspace_le_genEigenspace_maxUnifEigenspaceIndex πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
DFunLike.coe
OrderHom
ENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderHom.instFunLike
genEigenspace
ENat.instNatCast
maxUnifEigenspaceIndex
β€”genEigenspace_top_eq_maxUnifEigenspaceIndex
OrderHom.monotone
le_top
genEigenspace_le_maximal πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
DFunLike.coe
OrderHom
ENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderHom.instFunLike
genEigenspace
ENat.instNatCast
maxGenEigenspace
β€”OrderHom.monotone
le_top
genEigenspace_le_smul πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
DFunLike.coe
OrderHom
ENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderHom.instFunLike
genEigenspace
Module.End
LinearMap.instSMul
RingHom.id
Semiring.toNonAssocSemiring
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”smulCommClass_self
SemigroupAction.mul_smul
smul_sub
smul_pow
IsScalarTower.right
IsScalarTower.left
Algebra.to_smulCommClass
LinearMap.smul_apply
smul_zero
genEigenspace_nat πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
ENat
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
ENat.instNatCast
LinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
Module.End
LinearMap
Monoid.toNatPow
instMonoid
LinearMap.instSub
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
instOne
β€”Submodule.ext
smulCommClass_self
genEigenspace_one πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
ENat
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instCommSemiringENat
LinearMap.ker
RingHom.id
Module.End
LinearMap
LinearMap.instSub
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
instOne
β€”smulCommClass_self
Nat.cast_one
genEigenspace_nat
pow_one
genEigenspace_restrict πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
DFunLike.coe
Module.End
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
OrderHom
ENat
Submodule.addCommGroup
CommRing.toRing
Submodule.module
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
LinearMap.restrict
Submodule.comap
Submodule.addCommMonoid
Submodule.subtype
β€”Submodule.ext
smulCommClass_self
RingHomCompTriple.ids
genEigenspace_nat
pow_zero
one_eq_id
Submodule.ker_subtype
pow_succ
LinearMap.ker_comp
LinearMap.comp_assoc
mem_genEigenspace
genEigenspace_top πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
ENat
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
Top.top
instTopENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
ENat.instNatCast
β€”genEigenspace_eq_iSup_genEigenspace_nat
iSup_subtype
iSup_congr_Prop
iSup_pos
genEigenspace_top_eq_maxUnifEigenspaceIndex πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
ENat
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
Top.top
instTopENat
ENat.instNatCast
maxUnifEigenspaceIndex
β€”WellFoundedGT.iSup_eq_monotonicSequenceLimit
wellFoundedGT
iSup_congr_Prop
iSup_pos
iSup_prod'
iSup_subtype'
sSup_range
Set.ext
le_refl
genEigenspace_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
ENat
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
instZeroENat
Bot.bot
Submodule.instBot
β€”Submodule.ext
mem_genEigenspace_zero
genEigenspace_zero_nat πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
ENat
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ENat.instNatCast
LinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
Module.End
Monoid.toNatPow
instMonoid
β€”Submodule.ext
smulCommClass_self
zero_smul
sub_zero
generalized_eigenvec_disjoint_range_ker πŸ“–mathematicalβ€”Disjoint
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
Submodule.instOrderBot
genEigenrange
ENat
ENat.instNatCast
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
OrderHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderHom.instFunLike
genEigenspace
β€”smulCommClass_self
IsScalarTower.left
genEigenspace_nat
RingHomCompTriple.ids
LinearMap.ker_comp
genEigenspace_eq_genEigenspace_finrank_of_le
disjoint_iff_inf_le
RingHomSurjective.ids
genEigenrange_nat
LinearMap.range_eq_map
Submodule.map_inf_eq_map_inf_comap
top_inf_eq
Submodule.map_comap_le
hasEigenvalue_iff πŸ“–mathematicalβ€”HasEigenvalueβ€”β€”
hasEigenvalue_iff_mem_spectrum πŸ“–mathematicalβ€”HasEigenvalue
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Set
Set.instMembership
spectrum
Module.End
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Semifield.toCommSemiring
instRing
instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”hasUnifEigenvalue_iff_mem_spectrum
hasEigenvalue_of_hasEigenvector πŸ“–mathematicalHasEigenvectorHasEigenvalueβ€”HasUnifEigenvector.hasUnifEigenvalue
hasEigenvalue_of_hasGenEigenvalue πŸ“–mathematicalHasGenEigenvalueHasEigenvalueβ€”HasUnifEigenvalue.lt
zero_lt_one
IsOrderedRing.toZeroLEOneClass
NeZero.charZero_one
hasEigenvector_iff πŸ“–mathematicalβ€”HasEigenvector
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
eigenspace
β€”β€”
hasGenEigenvalue_iff πŸ“–mathematicalβ€”HasGenEigenvalueβ€”β€”
hasGenEigenvalue_iff_hasEigenvalue πŸ“–mathematicalβ€”HasGenEigenvalue
HasEigenvalue
β€”IsOrderedRing.toZeroLEOneClass
NeZero.charZero_one
hasGenEigenvalue_of_hasEigenvalue πŸ“–mathematicalHasEigenvalueHasGenEigenvalueβ€”HasUnifEigenvalue.lt
hasGenEigenvalue_of_hasGenEigenvalue_of_le πŸ“–β€”HasGenEigenvalueβ€”β€”HasUnifEigenvalue.le
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
hasGenEigenvector_iff πŸ“–mathematicalβ€”HasGenEigenvector
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
DFunLike.coe
OrderHom
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
ENat.instNatCast
β€”β€”
hasUnifEigenvalue_iff_hasUnifEigenvalue_one πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instZeroENat
HasUnifEigenvalue
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”HasUnifEigenvalue.lt
zero_lt_one
IsOrderedRing.toZeroLEOneClass
NeZero.charZero_one
hasUnifEigenvalue_iff_mem_spectrum πŸ“–mathematicalβ€”HasUnifEigenvalue
EuclideanDomain.toCommRing
Field.toEuclideanDomain
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Set
Set.instMembership
spectrum
Module.End
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Semifield.toCommSemiring
instRing
instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”smulCommClass_self
IsScalarTower.left
spectrum.mem_iff
IsUnit.sub_iff
LinearMap.isUnit_iff_ker_eq_bot
HasUnifEigenvalue.eq_1
genEigenspace_one
not_iff_not
iSup_genEigenspace_eq πŸ“–mathematicalβ€”iSup
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
DFunLike.coe
OrderHom
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
ENat.instNatCast
maxGenEigenspace
β€”genEigenspace_top
independent_genEigenspace πŸ“–mathematicalβ€”iSupIndep
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.completeLattice
DFunLike.coe
OrderHom
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
β€”Finset.induction_on
Finset.sup_empty
Finset.mem_insert
Finset.sup_insert
disjoint_iff
Submodule.eq_bot_iff
Submodule.mem_sup
smulCommClass_self
mapsTo_genEigenspace_of_comm
Algebra.mul_sub_algebraMap_pow_commutes
IsScalarTower.left
SetLike.mem_coe
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
zero_add
RingHomSurjective.ids
Submodule.map.congr_simp
Finset.sup_eq_iSup
Submodule.map_iSup
iSupβ‚‚_mono
Submodule.mem_map_of_mem
Submodule.mem_bot
Disjoint.eq_bot
disjoint_genEigenspace
iSupIndep_iff_supIndep_of_injOn
Submodule.instIsCompactlyGenerated
injOn_genEigenspace
Finset.notMem_erase
independent_maxGenEigenspace πŸ“–mathematicalβ€”iSupIndep
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.completeLattice
maxGenEigenspace
β€”independent_genEigenspace
injOn_genEigenspace πŸ“–mathematicalβ€”Set.InjOn
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
OrderHom
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
setOf
Bot.bot
Submodule.instBot
β€”disjoint_genEigenspace
injOn_maxGenEigenspace πŸ“–mathematicalβ€”Set.InjOn
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
maxGenEigenspace
setOf
Bot.bot
Submodule.instBot
β€”injOn_genEigenspace
isNilpotent_restrict_genEigenspace_nat πŸ“–mathematicalSet.MapsTo
DFunLike.coe
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instSub
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
instOne
SetLike.coe
Submodule
Submodule.setLike
OrderHom
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
ENat.instNatCast
mapsTo_genEigenspace_of_comm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instRing
RingHom
RingHom.instFunLike
algebraMap
instAlgebra
Algebra.toSMul
Algebra.id
IsScalarTower.left
Algebra.mul_sub_algebraMap_commutes
IsNilpotent
LinearMap
SetLike.instMembership
Submodule.addCommMonoid
Submodule.module
LinearMap.instZero
Monoid.toNatPow
instMonoid
LinearMap.restrict
β€”smulCommClass_self
LinearMap.ext
LinearMap.zero_apply
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
ZeroMemClass.coe_zero
ZeroMemClass.coe_eq_zero
pow_apply_mem_of_forall_mem
pow_restrict
LinearMap.restrict_apply
mem_genEigenspace_nat
isNilpotent_restrict_genEigenspace_top πŸ“–mathematicalSet.MapsTo
DFunLike.coe
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instSub
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
instOne
SetLike.coe
Submodule
Submodule.setLike
OrderHom
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
Top.top
instTopENat
mapsTo_genEigenspace_of_comm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instRing
RingHom
RingHom.instFunLike
algebraMap
instAlgebra
Algebra.toSMul
Algebra.id
IsScalarTower.left
Algebra.mul_sub_algebraMap_commutes
IsNilpotent
LinearMap
SetLike.instMembership
Submodule.addCommMonoid
Submodule.module
LinearMap.instZero
Monoid.toNatPow
instMonoid
LinearMap.restrict
β€”smulCommClass_self
isNilpotent_restrict_of_le
mapsTo_genEigenspace_of_comm
IsScalarTower.left
Algebra.mul_sub_algebraMap_commutes
genEigenspace_top_eq_maxUnifEigenspaceIndex
le_refl
isNilpotent_restrict_genEigenspace_nat
isNilpotent_restrict_maxGenEigenspace_sub_algebraMap πŸ“–mathematicalSet.MapsTo
DFunLike.coe
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instSub
RingHom
instSemiring
RingHom.instFunLike
algebraMap
instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SetLike.coe
Submodule
Submodule.setLike
maxGenEigenspace
mapsTo_maxGenEigenspace_of_comm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instRing
Algebra.mul_sub_algebraMap_commutes
IsNilpotent
LinearMap
SetLike.instMembership
Submodule.addCommMonoid
Submodule.module
LinearMap.instZero
Monoid.toNatPow
instMonoid
LinearMap.restrict
β€”smulCommClass_self
IsScalarTower.left
isNilpotent_restrict_of_le
mapsTo_genEigenspace_of_comm
Algebra.mul_sub_algebraMap_commutes
maxGenEigenspace_eq
le_refl
isNilpotent_restrict_genEigenspace_nat
isNilpotent_restrict_sub_algebraMap πŸ“–mathematicalSet.MapsTo
DFunLike.coe
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instSub
RingHom
instSemiring
RingHom.instFunLike
algebraMap
instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SetLike.coe
Submodule
Submodule.setLike
OrderHom
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
ENat.instNatCast
mapsTo_genEigenspace_of_comm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instRing
Algebra.mul_sub_algebraMap_commutes
IsNilpotent
LinearMap
SetLike.instMembership
Submodule.addCommMonoid
Submodule.module
LinearMap.instZero
Monoid.toNatPow
instMonoid
LinearMap.restrict
β€”smulCommClass_self
IsScalarTower.left
isNilpotent_restrict_genEigenspace_nat
mapsTo_genEigenspace_of_comm
Algebra.mul_sub_algebraMap_commutes
map_add_of_iInf_genEigenspace_ne_bot_of_commute πŸ“–mathematicalCommute
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instMul
DFunLike.coe
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”le_inf_iff
iInf_le
eq_bot_iff
le_trans
disjoint_iff_inf_le
Disjoint.mono_left
genEigenspace_inf_le_add
map_add
disjoint_genEigenspace
map_genEigenrange_le πŸ“–mathematicalβ€”Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
genEigenrange
EuclideanDomain.toCommRing
Field.toEuclideanDomain
ENat
ENat.instNatCast
β€”RingHomSurjective.ids
smulCommClass_self
IsScalarTower.left
genEigenrange_nat
LinearMap.range_comp
Algebra.mul_sub_algebraMap_pow_commutes
LinearMap.map_le_range
map_smul_of_iInf_genEigenspace_ne_bot πŸ“–mathematicalβ€”Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”smulCommClass_self
le_inf_iff
iInf_le
eq_bot_iff
le_trans
disjoint_iff_inf_le
Disjoint.mono_left
genEigenspace_le_smul
map_smul
disjoint_genEigenspace
mapsTo_genEigenspace_of_comm πŸ“–mathematicalCommute
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instMul
Set.MapsTo
DFunLike.coe
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
SetLike.coe
Submodule
Submodule.setLike
OrderHom
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
β€”smulCommClass_self
Commute.pow_left
IsScalarTower.left
Commute.sub_left
Algebra.commute_algebraMap_left
RingHomCompTriple.ids
LinearMap.comp_apply
mul_eq_comp
Commute.eq
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
mapsTo_maxGenEigenspace_of_comm πŸ“–mathematicalCommute
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instMul
Set.MapsTo
DFunLike.coe
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
SetLike.coe
Submodule
Submodule.setLike
maxGenEigenspace
β€”mapsTo_genEigenspace_of_comm
mapsTo_restrict_maxGenEigenspace_restrict_of_mapsTo πŸ“–mathematicalSet.MapsTo
DFunLike.coe
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
SetLike.coe
Submodule
Submodule.setLike
maxGenEigenspace
SetLike.instMembership
LinearMap
Submodule.addCommMonoid
Submodule.module
LinearMap.restrict
Submodule.addCommGroup
CommRing.toRing
β€”smulCommClass_self
Submodule.smul_mem
LinearMap.restrict_smul_one
Submodule.sub_mem
LinearMap.restrict_sub
pow_apply_mem_of_forall_mem
pow_restrict
maxGenEigenspace_eq πŸ“–mathematicalβ€”maxGenEigenspace
DFunLike.coe
OrderHom
ENat
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
ENat.instNatCast
maxGenEigenspaceIndex
β€”genEigenspace_top_eq_maxUnifEigenspaceIndex
maxGenEigenspace_eq_genEigenspace_finrank πŸ“–mathematicalβ€”maxGenEigenspace
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
OrderHom
ENat
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
ENat.instNatCast
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”le_antisymm
genEigenspace_top_eq_maxUnifEigenspaceIndex
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
genEigenspace_le_genEigenspace_finrank
OrderHom.monotone
le_top
maxGenEigenspace_eq_maxGenEigenspace_zero πŸ“–mathematicalβ€”maxGenEigenspace
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instSub
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
instOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Submodule.ext
smulCommClass_self
zero_smul
sub_zero
maxUnifEigenspaceIndex_le_finrank πŸ“–mathematicalβ€”maxUnifEigenspaceIndex
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
β€”Nat.sInf_le
le_antisymm
OrderHom.monotone
OrderEmbedding.monotone
smulCommClass_self
genEigenspace_nat
ker_pow_le_ker_pow_finrank
mem_eigenspace_iff πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
eigenspace
DFunLike.coe
Module.End
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”mem_genEigenspace_one
mem_genEigenspace πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
DFunLike.coe
OrderHom
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
Preorder.toLE
ENat.instNatCast
LinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
Module.End
LinearMap
Monoid.toNatPow
instMonoid
LinearMap.instSub
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
instOne
β€”zero_le
smulCommClass_self
Monotone.directed_le
SemilatticeSup.instIsDirectedOrder
OrderHom.monotone
iSup_subtype'
Submodule.mem_iSup_of_directed
mem_genEigenspace_nat πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
DFunLike.coe
OrderHom
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
ENat.instNatCast
LinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
Module.End
LinearMap
Monoid.toNatPow
instMonoid
LinearMap.instSub
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
instOne
β€”smulCommClass_self
mem_genEigenspace
OrderHom.monotone
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
le_rfl
mem_genEigenspace_one πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
DFunLike.coe
OrderHom
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instCommSemiringENat
Module.End
LinearMap.instFunLike
RingHom.id
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”smulCommClass_self
genEigenspace_one
LinearMap.mem_ker
LinearMap.sub_apply
sub_eq_zero
LinearMap.smul_apply
one_apply
mem_genEigenspace_top πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
DFunLike.coe
OrderHom
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
Top.top
instTopENat
LinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
Module.End
LinearMap
Monoid.toNatPow
instMonoid
LinearMap.instSub
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
instOne
β€”smulCommClass_self
mem_genEigenspace_zero πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
DFunLike.coe
OrderHom
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
instZeroENat
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”Nat.cast_zero
smulCommClass_self
mem_genEigenspace_nat
pow_zero
LinearMap.mem_ker
one_apply
mem_maxGenEigenspace πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
maxGenEigenspace
DFunLike.coe
Module.End
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
Monoid.toNatPow
instMonoid
LinearMap.instSub
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
instOne
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”mem_genEigenspace_top
pos_finrank_genEigenspace_of_hasEigenvalue πŸ“–mathematicalHasEigenvalue
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.finrank
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
DFunLike.coe
OrderHom
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Submodule.instPartialOrder
OrderHom.instFunLike
genEigenspace
ENat.instNatCast
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Submodule.addCommMonoid
Submodule.module
β€”finrank_bot
EuclideanDomain.toNontrivial
Submodule.finrank_lt_finrank_of_lt
FiniteDimensional.finiteDimensional_submodule
bot_lt_iff_ne_bot
Submodule.finrank_mono
IsNoetherianRing.strongRankCondition
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
OrderHom.monotone
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
zero_add

Module.End.Eigenvalues

Definitions

NameCategoryTheorems
val πŸ“–CompOp
2 mathmath: mk_val, val_mk

Theorems

NameKindAssumesProvesValidatesDepends On
mk_val πŸ“–mathematicalβ€”Module.End.HasUnifEigenvalue
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
val
β€”β€”
val_mk πŸ“–mathematicalModule.End.HasEigenvalueval
Module.End.HasUnifEigenvalue
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”β€”

Module.End.HasEigenvalue

Theorems

NameKindAssumesProvesValidatesDepends On
exists_hasEigenvector πŸ“–mathematicalModule.End.HasEigenvalueModule.End.HasEigenvectorβ€”Submodule.exists_mem_ne_zero_of_ne_bot
isNilpotent_of_isNilpotent πŸ“–mathematicalIsNilpotent
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instZero
RingHom.id
Semiring.toNonAssocSemiring
Monoid.toNatPow
Module.End.instMonoid
Module.End.HasEigenvalue
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”Module.End.HasUnifEigenvalue.isNilpotent_of_isNilpotent
mem_spectrum πŸ“–mathematicalModule.End.HasEigenvalueSet
Set.instMembership
spectrum
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Module.End.instRing
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”Module.End.HasUnifEigenvalue.mem_spectrum
of_mem_spectrum πŸ“–mathematicalSet
Set.instMembership
spectrum
Module.End
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Semifield.toCommSemiring
Module.End.instRing
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.End.HasEigenvalueβ€”smulCommClass_self
IsScalarTower.left
Module.End.hasEigenvalue_iff_mem_spectrum
pow πŸ“–mathematicalModule.End.HasEigenvalueModule.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Monoid.toNatPow
Module.End.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”Module.End.HasUnifEigenvalue.pow

Module.End.HasEigenvector

Theorems

NameKindAssumesProvesValidatesDepends On
apply_eq_smul πŸ“–mathematicalModule.End.HasEigenvectorDFunLike.coe
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”Module.End.HasUnifEigenvector.apply_eq_smul
pow_apply πŸ“–mathematicalModule.End.HasEigenvectorDFunLike.coe
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
Monoid.toNatPow
Module.End.instMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”Module.End.HasUnifEigenvector.pow_apply

Module.End.HasUnifEigenvalue

Theorems

NameKindAssumesProvesValidatesDepends On
exists_hasUnifEigenvector πŸ“–mathematicalModule.End.HasUnifEigenvalueModule.End.HasUnifEigenvectorβ€”Submodule.exists_mem_ne_zero_of_ne_bot
exp_ne_zero πŸ“–β€”Module.End.HasUnifEigenvalue
ENat
ENat.instNatCast
β€”β€”Nat.cast_zero
Module.End.genEigenspace_zero
isNilpotent_of_isNilpotent πŸ“–mathematicalIsNilpotent
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instZero
RingHom.id
Semiring.toNonAssocSemiring
Monoid.toNatPow
Module.End.instMonoid
Module.End.HasUnifEigenvalue
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instCommSemiringENat
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”exists_hasUnifEigenvector
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
IsDomain.toIsCancelMulZero
Module.End.HasUnifEigenvector.pow_apply
le πŸ“–β€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Module.End.HasUnifEigenvalue
β€”β€”Mathlib.Tactic.Contrapose.contraposeβ‚„
le_bot_iff
OrderHom.monotone
lt πŸ“–β€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instZeroENat
Module.End.HasUnifEigenvalue
β€”β€”le
Order.one_le_iff_pos
IsOrderedRing.toZeroLEOneClass
NeZero.charZero_one
eq_bot_iff
smulCommClass_self
Module.End.mem_genEigenspace
LinearMap.ker_eq_bot
Module.End.coe_pow
Function.Injective.iterate
Module.End.genEigenspace_one
mem_spectrum πŸ“–mathematicalModule.End.HasUnifEigenvalue
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Set
Set.instMembership
spectrum
Module.End
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Module.End.instRing
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”smulCommClass_self
IsScalarTower.left
spectrum.mem_iff
RingHomInvPair.ids
exists_hasUnifEigenvector
LinearMap.ker_eq_bot'
LinearEquiv.ker
Module.End.HasUnifEigenvector.apply_eq_smul
sub_self
of_mem_spectrum πŸ“–mathematicalSet
Set.instMembership
spectrum
Module.End
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Semifield.toCommSemiring
Module.End.instRing
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.End.HasUnifEigenvalue
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instCommSemiringENat
β€”smulCommClass_self
IsScalarTower.left
Module.End.hasUnifEigenvalue_iff_mem_spectrum
pow πŸ“–mathematicalModule.End.HasUnifEigenvalue
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Module.End
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Monoid.toNatPow
Module.End.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”eq_1
Submodule.ne_bot_iff
exists_hasUnifEigenvector
Module.End.HasUnifEigenvector.pow_apply

Module.End.HasUnifEigenvector

Theorems

NameKindAssumesProvesValidatesDepends On
apply_eq_smul πŸ“–mathematicalModule.End.HasUnifEigenvector
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
DFunLike.coe
Module.End
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”Module.End.mem_genEigenspace_one
hasUnifEigenvalue πŸ“–mathematicalModule.End.HasUnifEigenvectorModule.End.HasUnifEigenvalueβ€”Module.End.HasUnifEigenvalue.eq_1
Submodule.ne_bot_iff
pow_apply πŸ“–mathematicalModule.End.HasUnifEigenvector
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
DFunLike.coe
Module.End
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Monoid.toNatPow
Module.End.instMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”pow_zero
one_smul
pow_succ
apply_eq_smul
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
smul_smul
pow_succ'

Module.End.UnifEigenvalues

Definitions

NameCategoryTheorems
instCoeOut πŸ“–CompOpβ€”
val πŸ“–CompOp
9 mathmath: LinearMap.IsSymmetric.diagonalization_apply_self_apply, LinearMap.IsSymmetric.directSum_decompose_apply, LinearMap.IsSymmetric.diagonalization_symm_apply, val_mk, mk_val, LinearMap.IsSymmetric.orthogonalFamily_eigenspaces', LinearMap.IsSymmetric.orthogonalComplement_iSup_eigenspaces_eq_bot', LinearMap.IsSymmetric.direct_sum_isInternal, LinearMap.IsSymmetric.eigenvectorBasis_def

Theorems

NameKindAssumesProvesValidatesDepends On
mk_val πŸ“–mathematicalβ€”Module.End.HasUnifEigenvalue
val
β€”β€”
val_mk πŸ“–mathematicalModule.End.HasUnifEigenvaluevalβ€”β€”

Module.End.UnivEigenvalues

Definitions

NameCategoryTheorems
instDecidableEq πŸ“–CompOp
3 mathmath: LinearMap.IsSymmetric.directSum_decompose_apply, LinearMap.IsSymmetric.direct_sum_isInternal, LinearMap.IsSymmetric.eigenvectorBasis_def

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
inf_genEigenspace πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
DFunLike.coe
Module.End
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
instMin
OrderHom
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instPartialOrder
OrderHom.instFunLike
Module.End.genEigenspace
map
addCommMonoid
module
RingHomSurjective.ids
subtype
addCommGroup
CommRing.toRing
LinearMap.restrict
β€”RingHomSurjective.ids
Module.End.genEigenspace_restrict
map_comap_eq
range_subtype

---

← Back to Index