Documentation Verification Report

Minpoly

πŸ“ Source: Mathlib/LinearAlgebra/Eigenspace/Minpoly.lean

Statistics

MetricCount
DefinitionsinstFintypeEigenvalues
1
Theoremsfinite_spectrum, instFiniteSpectrum, aeval_apply_of_hasEigenvector, eigenspace_aeval_polynomial_degree_1, finite_hasEigenvalue, finite_spectrum, hasEigenvalue_iff_isRoot, hasEigenvalue_of_isRoot, isRoot_of_hasEigenvalue, ker_aeval_ring_hom'_unit_polynomial
10
Total11

Matrix

Theorems

NameKindAssumesProvesValidatesDepends On
finite_spectrum πŸ“–mathematicalβ€”Set.Finite
spectrum
Matrix
Semifield.toCommSemiring
Field.toSemifield
instRing
DivisionRing.toRing
Field.toDivisionRing
instAlgebra
Ring.toSemiring
Algebra.id
β€”smulCommClass_self
IsScalarTower.left
Finite.of_fintype
AlgEquiv.spectrum_eq
AlgEquiv.instAlgEquivClass
Module.End.finite_spectrum
FiniteDimensional.finiteDimensional_pi'
FiniteDimensional.finiteDimensional_self
instFiniteSpectrum πŸ“–mathematicalβ€”Finite
Set.Elem
spectrum
Matrix
Semifield.toCommSemiring
Field.toSemifield
instRing
DivisionRing.toRing
Field.toDivisionRing
instAlgebra
Ring.toSemiring
Algebra.id
β€”Set.finite_coe_iff
finite_spectrum

Module.End

Definitions

NameCategoryTheorems
instFintypeEigenvalues πŸ“–CompOp
3 mathmath: LinearMap.IsSymmetric.diagonalization_apply_self_apply, LinearMap.IsSymmetric.diagonalization_symm_apply, LinearMap.IsSymmetric.eigenvectorBasis_def

Theorems

NameKindAssumesProvesValidatesDepends On
aeval_apply_of_hasEigenvector πŸ“–mathematicalHasEigenvectorDFunLike.coe
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
AlgHom
Polynomial
Polynomial.semiring
instSemiring
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgHom.funLike
Polynomial.aeval
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Polynomial.eval
β€”Polynomial.induction_on
smulCommClass_self
IsScalarTower.left
Polynomial.aeval_C
Polynomial.eval_C
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.eval_add
add_smul
mul_comm
pow_succ'
mul_assoc
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
mul_apply
Polynomial.aeval_X
Polynomial.eval_mul
Polynomial.eval_pow
Polynomial.eval_X
MulActionSemiHomClass.map_smulβ‚›β‚—
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
mem_eigenspace_iff
smul_smul
eigenspace_aeval_polynomial_degree_1 πŸ“–mathematicalPolynomial.degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
WithBot
WithBot.one
Nat.instOne
eigenspace
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Polynomial.coeff
Polynomial.leadingCoeff
LinearMap.ker
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Module.End
Polynomial.semiring
instSemiring
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgHom.funLike
Polynomial.aeval
β€”smulCommClass_self
IsScalarTower.left
eigenspace_div
Polynomial.leadingCoeff_eq_zero_iff_deg_eq_bot
WithBot.one_ne_bot
Polynomial.C_mul'
Polynomial.aeval_def
neg_smul
sub_neg_eq_add
Polynomial.evalβ‚‚_add
Polynomial.evalβ‚‚_smul
Polynomial.evalβ‚‚_X
Algebra.smul_mul_assoc
one_mul
Polynomial.evalβ‚‚_C
Polynomial.eq_X_add_C_of_degree_eq_one
finite_hasEigenvalue πŸ“–mathematicalβ€”Set.Finite
HasEigenvalue
β€”smulCommClass_self
IsScalarTower.left
minpoly.ne_zero
IsDomain.toNontrivial
Algebra.IsIntegral.isIntegral
isIntegral
Set.ext
hasEigenvalue_iff_isRoot
Polynomial.mem_rootSet_of_ne
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
NoZeroDivisors.toNoZeroSMulDivisors
IsDomain.to_noZeroDivisors
Polynomial.IsRoot.eq_1
Polynomial.coe_aeval_eq_eval
Polynomial.rootSet_finite
finite_spectrum πŸ“–mathematicalβ€”Set.Finite
spectrum
Module.End
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Semifield.toCommSemiring
instRing
instAlgebra
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”smulCommClass_self
IsScalarTower.left
Set.ext
hasEigenvalue_iff_mem_spectrum
finite_hasEigenvalue
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
hasEigenvalue_iff_isRoot πŸ“–mathematicalβ€”HasEigenvalue
Polynomial.IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
Module.End
AddCommGroup.toAddCommMonoid
instRing
instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”smulCommClass_self
IsScalarTower.left
isRoot_of_hasEigenvalue
hasEigenvalue_of_isRoot
hasEigenvalue_of_isRoot πŸ“–mathematicalPolynomial.IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
Module.End
AddCommGroup.toAddCommMonoid
instRing
instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
HasEigenvalueβ€”smulCommClass_self
IsScalarTower.left
Polynomial.dvd_iff_isRoot
minpoly.min
Polynomial.Monic.of_mul_monic_left
Polynomial.monic_X_sub_C
minpoly.monic
Algebra.IsIntegral.isIntegral
isIntegral
LinearMap.ext
Nat.cast_one
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
Polynomial.degree_eq_natDegree
minpoly.ne_zero
IsDomain.toNontrivial
MulZeroClass.mul_zero
Polynomial.degree_X_sub_C
Polynomial.degree_mul
IsDomain.to_noZeroDivisors
hasEigenvalue_of_hasEigenvector
hasEigenvector_iff
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.aeval_sub
Polynomial.aeval_X
Polynomial.aeval_C
minpoly.aeval
isRoot_of_hasEigenvalue πŸ“–mathematicalHasEigenvaluePolynomial.IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
Module.End
AddCommGroup.toAddCommMonoid
instRing
instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”smulCommClass_self
IsScalarTower.left
Submodule.ne_bot_iff
smul_eq_zero
IsDomain.toIsCancelMulZero
aeval_apply_of_hasEigenvector
minpoly.aeval
ker_aeval_ring_hom'_unit_polynomial πŸ“–mathematicalβ€”LinearMap.ker
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
DFunLike.coe
AlgHom
Polynomial
Module.End
Polynomial.semiring
instSemiring
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebra
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgHom.funLike
Polynomial.aeval
Units.val
Bot.bot
Submodule
Submodule.instBot
β€”smulCommClass_self
IsScalarTower.left
LinearMap.ker_eq_bot'
Units.inv_mul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass

---

← Back to Index