Documentation Verification Report

Pi

πŸ“ Source: Mathlib/LinearAlgebra/Eigenspace/Pi.lean

Statistics

MetricCount
Definitions0
Theoremsdisjoint_iInf_maxGenEigenspace, iInf_maxGenEigenspace_restrict_map_subtype_eq, iSup_iInf_maxGenEigenspace_eq_top_of_forall_mapsTo, iSup_iInf_maxGenEigenspace_eq_top_of_iSup_maxGenEigenspace_eq_top_of_commute, independent_iInf_maxGenEigenspace_of_forall_mapsTo, injOn_iInf_maxGenEigenspace, mem_iInf_maxGenEigenspace_iff, inf_iInf_maxGenEigenspace_of_forall_mapsTo
8
Total8

Module.End

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_iInf_maxGenEigenspace πŸ“–mathematicalβ€”Disjoint
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
Submodule.instOrderBot
iInf
Submodule.instInfSet
maxGenEigenspace
β€”Function.ne_iff
Disjoint.mono
iInf_le
disjoint_genEigenspace
iInf_maxGenEigenspace_restrict_map_subtype_eq πŸ“–mathematicalSet.MapsTo
DFunLike.coe
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
SetLike.coe
Submodule
Submodule.setLike
maxGenEigenspace
Submodule.map
SetLike.instMembership
Submodule.addCommMonoid
Submodule.module
RingHomSurjective.ids
Submodule.subtype
iInf
Submodule.addCommGroup
CommRing.toRing
Submodule.instInfSet
β€”le_antisymm
iInf_le
inf_le_right
RingHomSurjective.ids
Submodule.map_iInf
Submodule.injective_subtype
Submodule.inf_iInf
Submodule.inf_genEigenspace
iSup_iInf_maxGenEigenspace_eq_top_of_forall_mapsTo πŸ“–mathematicalSet.MapsTo
DFunLike.coe
Module.End
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
SetLike.coe
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Submodule.setLike
maxGenEigenspace
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Top.top
Submodule.instTop
iInf
Submodule.instInfSet
β€”forall_or_exists_not
le_trans
le_iSup
Submodule.finrank_lt
LT.lt.ne
FiniteDimensional.finiteDimensional_submodule
mapsTo_restrict_maxGenEigenspace_restrict_of_mapsTo
genEigenspace_restrict_eq_top
eq_bot_iff
Submodule.ker_subtype
LinearMap.ker.eq_1
RingHomSurjective.ids
Submodule.map_le_iff_le_comap
Submodule.inf_iInf_maxGenEigenspace_of_forall_mapsTo
disjoint_iff_inf_le
Disjoint.mono_right
iInf_le
disjoint_genEigenspace
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
iSup_bot
iSup_congr_Prop
sup_of_le_right
biSup_congr
iSup_split
iInf_maxGenEigenspace_restrict_map_subtype_eq
Submodule.map.congr_simp
Submodule.map_top
Submodule.range_subtype
iSup_comm
iSup_iSup_eq_right
iSup_iInf_maxGenEigenspace_eq_top_of_iSup_maxGenEigenspace_eq_top_of_commute πŸ“–mathematicalPairwise
Commute
Module.End
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
instMul
iSup
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
maxGenEigenspace
Top.top
Submodule.instTop
iInf
Submodule.instInfSet
β€”iSup_iInf_maxGenEigenspace_eq_top_of_forall_mapsTo
mapsTo_maxGenEigenspace_of_comm
eq_or_ne
independent_iInf_maxGenEigenspace_of_forall_mapsTo πŸ“–mathematicalSet.MapsTo
DFunLike.coe
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
SetLike.coe
Submodule
Submodule.setLike
maxGenEigenspace
iSupIndep
Submodule.completeLattice
iInf
Submodule.instInfSet
β€”Finset.induction_on
Finset.sup_empty
Finset.mem_insert
Finset.sup_insert
disjoint_iff
Submodule.eq_bot_iff
Submodule.mem_sup
smulCommClass_self
IsScalarTower.left
mem_iInf_maxGenEigenspace_iff
coe_pow
Set.MapsTo.iterate
Submodule.sub_mem
Submodule.smul_mem
Submodule.mem_inf
Submodule.coe_iInf
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
zero_add
RingHomSurjective.ids
Submodule.map.congr_simp
Finset.sup_eq_iSup
Submodule.map_iSup
iSupβ‚‚_mono
Submodule.mem_map_of_mem
Disjoint.eq_bot
Submodule.mem_bot
disjoint_iInf_maxGenEigenspace
iSupIndep_iff_supIndep_of_injOn
Submodule.instIsCompactlyGenerated
injOn_iInf_maxGenEigenspace
Finset.notMem_erase
injOn_iInf_maxGenEigenspace πŸ“–mathematicalβ€”Set.InjOn
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
iInf
Submodule.instInfSet
maxGenEigenspace
setOf
Bot.bot
Submodule.instBot
β€”Mathlib.Tactic.Contrapose.contrapose₁
disjoint_iInf_maxGenEigenspace
mem_iInf_maxGenEigenspace_iff πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
iInf
Submodule.instInfSet
maxGenEigenspace
DFunLike.coe
Module.End
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
Monoid.toNatPow
instMonoid
LinearMap.instSub
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
instOne
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”smulCommClass_self

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
inf_iInf_maxGenEigenspace_of_forall_mapsTo πŸ“–mathematicalSet.MapsTo
DFunLike.coe
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
SetLike.coe
Submodule
setLike
instMin
iInf
instInfSet
Module.End.maxGenEigenspace
map
SetLike.instMembership
addCommMonoid
module
RingHomSurjective.ids
subtype
addCommGroup
CommRing.toRing
LinearMap.restrict
β€”isEmpty_or_nonempty
RingHomSurjective.ids
iInf_of_isEmpty
sInf_empty
inf_of_le_left
map.congr_simp
map_top
range_subtype
inf_iInf
inf_genEigenspace
map_iInf
injective_subtype

---

← Back to Index