TheoremsbasisSingleton_apply, basisSingleton_repr_apply, exists_mul_eq_one, exists_relation_sum_zero_pos_coefficient_of_finrank_succ_lt_card, finiteDimensional_subalgebra, isUnit, of_rank_eq_nat, of_rank_eq_one, of_rank_eq_zero, of_subalgebra_toSubmodule, range_basisSingleton, subalgebra_toSubmodule, coe_ofInjectiveEndo, coe_ofInjectiveOfFinrankEq, ofInjectiveEndo_left_inv, ofInjectiveEndo_right_inv, lt_aleph0_of_finiteDimensional, comap_eq_sup_ker_of_disjoint, comp_eq_id_comm, finiteDimensional_of_surjective, finiteDimensional_range, injOn_iff_surjOn, injective_iff_surjective, instIsStablyFiniteRing, instIsStablyFiniteRingEnd, isUnit_iff_ker_eq_bot, isUnit_iff_range_eq_top, ker_comp_eq_of_commute_of_disjoint_ker, ker_eq_bot_iff_range_eq_top, ker_noncommProd_eq_of_supIndep_ker, mul_eq_one_comm, mul_eq_one_of_mul_eq_one, surjective_of_injective, injective_of_surjective, ker_pow_constant, finrank_mono, eq_of_le_of_finrank_eq, eq_of_le_of_finrank_le, finiteDimensional_toSubmodule, eq_of_le_of_finrank_eq, eq_of_le_of_finrank_le, eq_top_of_finrank_eq, finiteDimensional_finset_sup, finiteDimensional_iSup, finiteDimensional_inf_left, finiteDimensional_inf_right, finiteDimensional_of_le, finiteDimensional_sup, exists_smul_eq_of_finrank_eq_one, finiteDimensional_bot, finiteDimensional_finsupp, finrank_eq_one_iff_of_nonzero, finrank_eq_one_iff_of_nonzero', finrank_span_singleton, finrank_zero_iff_forall_zero, surjective_of_nonzero_of_finrank_eq_one | 56 |