Documentation Verification Report

LinearCombination

πŸ“ Source: Mathlib/LinearAlgebra/Finsupp/LinearCombination.lean

Statistics

MetricCount
DefinitionsaddSingleEquiv, bilinearCombination, linearCombination, linearCombinationOn, bilinearCombination, linearCombination, repr
7
Theoremsapply_linearCombination, apply_linearCombination_id, bilinearCombination_apply, linearCombinationOn_range, linearCombination_apply, linearCombination_apply_of_mem_supported, linearCombination_comapDomain, linearCombination_comp, linearCombination_comp_addSingleEquiv, linearCombination_comp_lmapDomain, linearCombination_embDomain, linearCombination_eq_fintype_linearCombination, linearCombination_eq_fintype_linearCombination_apply, linearCombination_equivMapDomain, linearCombination_fin_zero, linearCombination_id_surjective, linearCombination_linearCombination, linearCombination_linear_comp, linearCombination_mapDomain, linearCombination_onFinset, linearCombination_option, linearCombination_range, linearCombination_restrict, linearCombination_single, linearCombination_single_index, linearCombination_smul, linearCombination_surjective, linearCombination_unique, linearCombination_zero, linearCombination_zero_apply, lmapDomain_linearCombination, mem_span_iff_linearCombination, mem_span_image_iff_linearCombination, mem_span_range_iff_exists_finsupp, range_linearCombination, span_eq_range_linearCombination, span_image_eq_map_linearCombination, bilinearCombination_apply, bilinearCombination_apply_single, linearCombination_apply, linearCombination_apply_single, mem_span_image_iff_exists_fun, range_linearCombination, map_finsupp_linearCombination, finsupp_linearCombination_repr, repr_def, mem_span_finset, mem_span_finset', mem_span_iff_exists_finset_subset, mem_span_iff_of_fintype, mem_span_image_iff_exists_fun, mem_span_range_iff_exists_fun, mem_span_set, mem_span_set', span_eq_iUnion_nat, top_le_span_range_iff_forall_exists_fun, span_range_eq_top_iff_surjective_finsuppLinearCombination, span_range_eq_top_iff_surjective_fintypeLinearCombination
58
Total65

Finsupp

Definitions

NameCategoryTheorems
addSingleEquiv πŸ“–CompOp
1 mathmath: linearCombination_comp_addSingleEquiv
bilinearCombination πŸ“–CompOp
1 mathmath: bilinearCombination_apply
linearCombination πŸ“–CompOp
101 mathmath: linearCombination_apply_of_mem_supported, Orthonormal.inner_left_finsupp, QuadraticMap.sum_polar_sub_repr_sq, Module.Basis.toDual_linearCombination_left, linearCombination_id_surjective, LinearIndependent.linearCombination_repr, Span.repr_def, linearIndependent_iff_injective_finsuppLinearCombination, linearCombination_zero_apply, mem_span_iff_linearCombination, linearIndependent_iff_ker, linearCombination_smul, lmapDomain_linearCombination, linearCombination_one_tmul, KaehlerDifferential.kerTotal_eq, span_image_eq_map_linearCombination, Representation.leftRegular_norm_eq_zero_iff, linearCombination_linear_comp, IsBaseChange.of_basis, Module.Basis.repr_linearCombination, Algebra.Generators.H1Cotangent.Ξ΄Aux_toAlgHom, linearCombination_single_index, LinearIndependent.linearCombinationEquiv_apply_coe, LinearIndependent.linearCombination_comp_repr, Module.Basis.linearCombination_dualBasis, KaehlerDifferential.ker_map, IsLocalizedModule.map_linearCombination, linearIndepOn_iff_disjoint, Orthonormal.inner_finsupp_eq_sum_right, span_eq_range_linearCombination, MvPolynomial.combinatorial_nullstellensatz_exists_linearCombination, Algebra.Presentation.differentials.comm₂₃', linearCombination_apply, Submodule.mulRightMap_eq_mulMap_comp, linearCombination_embDomain, linearCombination_single, Orthonormal.inner_right_finsupp, linearCombination_unique, linearCombination_mapDomain, Span.finsupp_linearCombination_repr, LinearIndependent.linearCombinationEquiv_symm_apply, linearCombination_range, Orthonormal.inner_finsupp_eq_sum_left, LinearIndependent.finsuppLinearCombination_injective, Representation.ker_leftRegular_norm_eq, linearCombination_restrict, linearCombination_comp, range_linearCombination, bilinearCombination_apply, apply_linearCombination, Module.Basis.end_repr_symm_apply, linearCombination_comp_addSingleEquiv, MonomialOrder.div_set, Submodule.mulLeftMap_eq_mulMap_comp, KaehlerDifferential.derivationQuotKerTotal_lift_comp_linearCombination, Rep.coindVEquiv_apply_hom, Module.Basis.linearCombination_repr, Module.FinitePresentation.out, Module.Basis.linearCombination_coord, Representation.FiniteCyclicGroup.coinvariantsKer_leftRegular_eq_ker, Module.projective_def', Module.Basis.coe_repr_symm, linearCombination_fin_zero, linearCombination_equivMapDomain, Orthonormal.inner_finsupp_eq_zero, QuadraticMap.apply_linearCombination', linearCombination_linearCombination, linearCombination_option, linearCombination_eq_fintype_linearCombination, KaehlerDifferential.ker_map_of_surjective, Module.Basis.linearMap_repr_symm_apply, span_range_eq_top_iff_surjective_finsuppLinearCombination, Representation.leftRegular_norm_apply, Module.Basis.toDual_linearCombination_right, QuadraticMap.apply_linearCombination, Module.projective_def, Rep.freeLift_hom, MonomialOrder.div, linearCombination_surjective, linearCombination_comp_lmapDomain, mem_span_image_iff_linearCombination, Module.Basis.constr_def, QuadraticMap.sum_repr_sq_add_sum_repr_mul_polar, Module.DualBases.lc_def, linearCombination_comapDomain, Module.Basis.repr_symm_apply, apply_linearCombination_id, Module.Projective.out, linearCombination_eq_fintype_linearCombination_apply, mem_finsuppAffineCoords_iff_linearCombination, linearDepOn_iff', KaehlerDifferential.quotKerTotalEquiv_apply, linearCombination_zero, linearDepOn_iff'β‚›, LinearMap.map_finsupp_linearCombination, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, lsum_comp_mapRange_toSpanSingleton, KaehlerDifferential.linearCombination_surjective, linearCombination_onFinset, Module.Relations.Solution.linearCombination_var_relation, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply
linearCombinationOn πŸ“–CompOp
4 mathmath: linearCombinationOn_range, linearCombination_restrict, linearIndepOn_iff_linearCombinationOnβ‚›, linearIndepOn_iff_linearCombinationOn

Theorems

NameKindAssumesProvesValidatesDepends On
apply_linearCombination πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
linearCombination
β€”RingHomCompTriple.ids
linearCombination_linear_comp
apply_linearCombination_id πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
linearCombination
β€”apply_linearCombination
bilinearCombination_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
Pi.addCommMonoid
LinearMap.addCommMonoid
Pi.Function.module
LinearMap.module
LinearMap.instFunLike
bilinearCombination
linearCombination
β€”β€”
linearCombinationOn_range πŸ“–mathematicalβ€”LinearMap.range
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Submodule
instAddCommMonoid
module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
supported
Submodule.span
Set.image
Submodule.addCommMonoid
Submodule.module
RingHom.id
RingHomSurjective.ids
linearCombinationOn
Top.top
Submodule.instTop
β€”RingHomSurjective.ids
linearCombinationOn.eq_1
LinearMap.range_eq_map
LinearMap.map_codRestrict
LinearMap.range_le_iff_comap
Submodule.range_subtype
Submodule.map_top
LinearMap.range_comp
Eq.le
span_image_eq_map_linearCombination
linearCombination_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instFunLike
linearCombination
sum
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”
linearCombination_apply_of_mem_supported πŸ“–mathematicalFinsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Submodule
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instAddCommMonoid
module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
supported
SetLike.coe
Finset
Finset.instSetLike
DFunLike.coe
LinearMap
RingHom.id
LinearMap.instFunLike
linearCombination
Finset.sum
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instFunLike
β€”Finset.sum_subset
notMem_support_iff
zero_smul
linearCombination_comapDomain πŸ“–mathematicalSet.InjOn
Set.preimage
SetLike.coe
Finset
Finset.instSetLike
support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
LinearMap
RingHom.id
Finsupp
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instFunLike
linearCombination
comapDomain
Finset.sum
Finset.preimage
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instFunLike
β€”linearCombination_apply
linearCombination_comp πŸ“–mathematicalβ€”linearCombination
LinearMap.comp
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instAddCommMonoid
module
Semiring.toModule
RingHom.id
RingHomCompTriple.ids
lmapDomain
β€”lhom_ext'
RingHomCompTriple.ids
LinearMap.ext_ring
sum_single_index
zero_smul
one_smul
mapDomain_single
linearCombination_comp_addSingleEquiv πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
LinearMap.comp
Finsupp
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toAddCommMonoid
module
Semiring.toModule
RingHom.id
RingHomCompTriple.ids
linearCombination
LinearEquiv.toLinearMap
RingHomInvPair.ids
addSingleEquiv
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”lhom_ext'
RingHomCompTriple.ids
RingHomInvPair.ids
LinearMap.ext_ring
linearCombination_single
smul_add
one_smul
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
linearCombination_comp_lmapDomain πŸ“–mathematicalβ€”LinearMap.comp
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instAddCommMonoid
module
Semiring.toModule
RingHom.id
RingHomCompTriple.ids
linearCombination
lmapDomain
β€”lhom_ext'
RingHomCompTriple.ids
LinearMap.ext_ring
mapDomain_single
linearCombination_single
one_smul
linearCombination_embDomain πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instFunLike
linearCombination
embDomain
Function.Embedding
Function.instFunLikeEmbedding
β€”Finset.sum_congr
embDomain_apply
dite_smul
zero_smul
Finset.sum_map
Function.instEmbeddingLikeEmbedding
Classical.choose_eq
linearCombination_eq_fintype_linearCombination πŸ“–mathematicalβ€”LinearMap.comp
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instAddCommMonoid
Pi.Function.module
Semiring.toModule
module
RingHom.id
RingHomCompTriple.ids
linearCombination
LinearEquiv.toLinearMap
RingHomInvPair.ids
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
LinearEquiv.symm
linearEquivFunOnFinite
Finite.of_fintype
Fintype.linearCombination
β€”LinearMap.ext
RingHomCompTriple.ids
RingHomInvPair.ids
Finite.of_fintype
linearCombination_eq_fintype_linearCombination_apply
linearCombination_eq_fintype_linearCombination_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instFunLike
linearCombination
LinearEquiv
RingHomInvPair.ids
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Pi.addCommMonoid
Pi.Function.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
linearEquivFunOnFinite
Finite.of_fintype
Fintype.linearCombination
β€”Finset.sum_subset
RingHomInvPair.ids
Finite.of_fintype
Finset.subset_univ
notMem_support_iff
zero_smul
linearCombination_equivMapDomain πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instFunLike
linearCombination
equivMapDomain
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”equivMapDomain_eq_mapDomain
linearCombination_mapDomain
linearCombination_fin_zero πŸ“–mathematicalβ€”linearCombination
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instZero
β€”lhom_ext'
LinearMap.ext_ring
RingHomCompTriple.ids
linearCombination_id_surjective πŸ“–mathematicalβ€”Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
LinearMap
RingHom.id
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instFunLike
linearCombination
β€”linearCombination_surjective
linearCombination_linearCombination πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instFunLike
linearCombination
β€”induction_linear
sum_add_index
zero_smul
add_smul
sum_apply
sum_single_index
sum_smul_index
SemigroupAction.mul_smul
smul_sum
sum_fun_zero
linearCombination_linear_comp πŸ“–mathematicalβ€”linearCombination
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearMap.comp
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
RingHomCompTriple.ids
β€”lhom_ext'
RingHomCompTriple.ids
LinearMap.ext_ring
sum_single_index
zero_smul
one_smul
linearCombination_mapDomain πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instFunLike
linearCombination
mapDomain
β€”LinearMap.congr_fun
RingHomCompTriple.ids
linearCombination_comp_lmapDomain
linearCombination_onFinset πŸ“–mathematicalFinset
Finset.instMembership
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instFunLike
linearCombination
onFinset
Finset.sum
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”Finset.sum_congr
support_onFinset
Finset.sum_filter_of_ne
Mathlib.Tactic.Contrapose.contraposeβ‚„
zero_smul
linearCombination_option πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instFunLike
linearCombination
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instFunLike
some
β€”linearCombination_apply
sum_option_index_smul
linearCombination_range πŸ“–mathematicalβ€”LinearMap.range
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
RingHom.id
RingHomSurjective.ids
linearCombination
Top.top
Submodule
Submodule.instTop
β€”RingHomSurjective.ids
LinearMap.range_eq_top
linearCombination_surjective
linearCombination_restrict πŸ“–mathematicalβ€”linearCombination
Set.Elem
Set.restrict
LinearMap.comp
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
instAddCommMonoid
Submodule.addCommMonoid
module
Semiring.toModule
Submodule.module
RingHom.id
RingHomCompTriple.ids
Submodule.subtype
supported
linearCombinationOn
LinearEquiv.toLinearMap
RingHomInvPair.ids
LinearEquiv.symm
supportedEquivFinsupp
β€”lhom_ext'
RingHomCompTriple.ids
RingHomInvPair.ids
LinearMap.ext_ring
linearCombination_single
one_smul
LinearMap.comp.congr_simp
LinearMap.comp_codRestrict
LinearMap.subtype_comp_codRestrict
supportedEquivFinsupp_symm_apply_coe
extendDomain_single
linearCombination_single πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instFunLike
linearCombination
single
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”sum_single_index
zero_smul
linearCombination_single_index πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instFunLike
linearCombination
Pi.single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instFunLike
β€”linearCombination_apply
sum_eq_single
Pi.single_eq_of_ne
smul_zero
zero_smul
Pi.single_eq_same
linearCombination_smul πŸ“–mathematicalβ€”linearCombination
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
LinearMap.comp
Finsupp
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instAddCommMonoid
module
Semiring.toModule
RingHom.id
RingHomCompTriple.ids
LinearMap.restrictScalars
LinearMap.CompatibleSMul.finsupp_dom
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
LinearMap.IsScalarTower.compatibleSMul'
mapRange.linearMap
LinearEquiv.toLinearMap
RingHomInvPair.ids
instZero
curryLinearEquiv
β€”lhom_ext'
RingHomCompTriple.ids
LinearMap.CompatibleSMul.finsupp_dom
LinearMap.IsScalarTower.compatibleSMul'
RingHomInvPair.ids
LinearMap.ext_ring
linearCombination_single
one_smul
curry_single
LinearMap.map_zero
mapRange_single
linearCombination_surjective πŸ“–mathematicalβ€”Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
LinearMap
RingHom.id
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instFunLike
linearCombination
β€”linearCombination_single
one_smul
linearCombination_unique πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instFunLike
linearCombination
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instFunLike
Unique.instInhabited
β€”linearCombination_single
unique_single
linearCombination_zero πŸ“–mathematicalβ€”linearCombination
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instZero
β€”LinearMap.ext
linearCombination_zero_apply
linearCombination_zero_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instFunLike
linearCombination
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”smul_zero
sum_fun_zero
lmapDomain_linearCombination πŸ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearMap.comp
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instAddCommMonoid
module
Semiring.toModule
RingHomCompTriple.ids
linearCombination
lmapDomain
β€”lhom_ext'
RingHomCompTriple.ids
LinearMap.ext_ring
mapDomain_single
sum_single_index
zero_smul
one_smul
mem_span_iff_linearCombination πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
Set.Elem
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
LinearMap.instFunLike
linearCombination
Set
Set.instMembership
β€”RingHomSurjective.ids
SetLike.ext_iff
span_eq_range_linearCombination
mem_span_image_iff_linearCombination πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instAddCommMonoid
module
Semiring.toModule
supported
DFunLike.coe
LinearMap
RingHom.id
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
LinearMap.instFunLike
linearCombination
β€”RingHomSurjective.ids
span_image_eq_map_linearCombination
mem_span_range_iff_exists_finsupp πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
sum
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”RingHomSurjective.ids
range_linearCombination πŸ“–mathematicalβ€”LinearMap.range
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
RingHom.id
RingHomSurjective.ids
linearCombination
Submodule.span
Set.range
β€”Submodule.ext
RingHomSurjective.ids
LinearMap.mem_range
linearCombination_apply
sum_mem
Submodule.addSubmonoidClass
Submodule.smul_mem
Submodule.subset_span
Set.mem_range_self
Submodule.span_le
SetLike.mem_coe
linearCombination_single
one_smul
span_eq_range_linearCombination πŸ“–mathematicalβ€”Submodule.span
LinearMap.range
Finsupp
Set
Set.instMembership
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
RingHom.id
RingHomSurjective.ids
linearCombination
β€”RingHomSurjective.ids
range_linearCombination
Subtype.range_coe_subtype
Set.setOf_mem_eq
span_image_eq_map_linearCombination πŸ“–mathematicalβ€”Submodule.span
Set.image
Submodule.map
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
RingHom.id
RingHomSurjective.ids
linearCombination
supported
β€”Submodule.span_eq_of_le
RingHomSurjective.ids
Set.mem_image
single_mem_supported
linearCombination_single
one_smul
Submodule.map_le_iff_le_comap
Submodule.smul_mem
Submodule.subset_span
Set.mem_image_of_mem
mem_supported'
zero_smul
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
Submodule.mem_comap
linearCombination_apply
sum_mem

Fintype

Definitions

NameCategoryTheorems
bilinearCombination πŸ“–CompOp
2 mathmath: bilinearCombination_apply_single, bilinearCombination_apply
linearCombination πŸ“–CompOp
17 mathmath: IsBaseChange.of_fintype_basis_eq, PiToModule.fromEnd_apply, bilinearCombination_apply, RootPairing.EmbeddedG2.allRoots_eq_map_allCoeffs, Matrix.GeneralLinearGroup.toLin'_apply, IsBaseChange.of_fintype_basis, span_range_eq_top_iff_surjective_fintypeLinearCombination, range_linearCombination, Matrix.represents_iff, Matrix.Represents.congr_fun, LinearIndependent.fintypeLinearCombination_injective, linearIndependent_iff_injective_fintypeLinearCombination, PiToModule.fromMatrix_apply, Finsupp.linearCombination_eq_fintype_linearCombination, linearCombination_apply_single, linearCombination_apply, Finsupp.linearCombination_eq_fintype_linearCombination_apply

Theorems

NameKindAssumesProvesValidatesDepends On
bilinearCombination_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.addCommMonoid
LinearMap.module
LinearMap.instFunLike
bilinearCombination
linearCombination
β€”β€”
bilinearCombination_apply_single πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
bilinearCombination
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”linearCombination_apply_single
linearCombination_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
linearCombination
Finset.sum
Finset.univ
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”
linearCombination_apply_single πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
linearCombination
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”Finset.sum_congr
Pi.single_apply
ite_smul
zero_smul
Finset.sum_ite_eq'
Finset.mem_univ
mem_span_image_iff_exists_fun πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
Finset.sum
Set.Elem
Finset.univ
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
β€”Submodule.mem_span_range_iff_exists_fun
Set.image_eq_range
range_linearCombination πŸ“–mathematicalβ€”LinearMap.range
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Pi.Function.module
Semiring.toModule
RingHom.id
RingHomSurjective.ids
linearCombination
Submodule.span
Set.range
β€”RingHomSurjective.ids
RingHomCompTriple.ids
RingHomInvPair.ids
Finite.of_fintype
Finsupp.linearCombination_eq_fintype_linearCombination
LinearMap.range_comp
RingHomSurjective.invPair
LinearEquiv.range
Submodule.map_top
Finsupp.range_linearCombination

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
map_finsupp_linearCombination πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
Finsupp.linearCombination
β€”Finsupp.apply_linearCombination

Span

Definitions

NameCategoryTheorems
repr πŸ“–CompOp
3 mathmath: repr_def, LinearIndependent.span_repr_eq, finsupp_linearCombination_repr

Theorems

NameKindAssumesProvesValidatesDepends On
finsupp_linearCombination_repr πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
Set
Set.instMembership
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Finsupp.linearCombination
repr
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
β€”repr_def
Finsupp.mem_span_iff_linearCombination
repr_def πŸ“–mathematicalβ€”repr
Finsupp
Set.Elem
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
LinearMap
RingHom.id
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Finsupp.linearCombination
Set
Set.instMembership
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
β€”β€”

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
mem_span_finset πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
setLike
span
SetLike.coe
Finset
Finset.instSetLike
Set
Set.instHasSubset
Function.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.sum
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”mem_span_iff_exists_finset_subset
HasSubset.Subset.trans
Set.instIsTransSubset
Finset.sum_subset
Function.support_subset_iff'
zero_smul
sum_mem
addSubmonoidClass
smul_mem
subset_span
mem_span_finset' πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
setLike
span
SetLike.coe
Finset
Finset.instSetLike
Finset.sum
Finset.univ
Finset.Subtype.fintype
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”mem_span_iff_of_fintype
mem_span_iff_exists_finset_subset πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
setLike
span
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Function.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.sum
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”Set.image_id
Finsupp.mem_span_image_iff_linearCombination
Set.image_congr
Set.image_id'
Finsupp.fun_support_eq
Set.instReflSubset
Finset.sum_congr
sum_mem
addSubmonoidClass
smul_mem
subset_span
mem_span_iff_of_fintype πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
setLike
span
Finset.sum
Set.Elem
Finset.univ
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
β€”Subtype.range_val
mem_span_range_iff_exists_fun
mem_span_image_iff_exists_fun πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
setLike
span
Set.image
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Finset.sum
Finset.univ
Finset.Subtype.fintype
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”Finsupp.mem_span_image_iff_linearCombination
Finset.sum_coe_sort
sum_smul_mem
subset_span
mem_span_range_iff_exists_fun πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
setLike
span
Set.range
Finset.sum
Finset.univ
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”Finite.of_fintype
Function.Surjective.exists
Equiv.surjective
Finset.sum_congr
Finsupp.sum_fintype
zero_smul
mem_span_set πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
setLike
span
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.sum
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”Set.image_id
Finsupp.mem_span_image_iff_linearCombination
mem_span_set' πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
setLike
span
Finset.sum
Finset.univ
Fin.fintype
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
β€”mem_span_set
Finsupp.sum.eq_1
Finset.sum_coe_sort
Fintype.sum_equiv
sum_mem
smul_mem
subset_span
span_eq_iUnion_nat πŸ“–mathematicalβ€”SetLike.coe
Submodule
setLike
span
Set.iUnion
Set.image
Finset.sum
Finset.univ
Fin.fintype
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
setOf
β€”Set.ext
top_le_span_range_iff_forall_exists_fun πŸ“–mathematicalβ€”Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Top.top
instTop
span
Set.range
Finset.sum
Finset.univ
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
span_range_eq_top_iff_surjective_finsuppLinearCombination πŸ“–mathematicalβ€”Submodule.span
Set.range
Top.top
Submodule
Submodule.instTop
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
LinearMap
RingHom.id
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Finsupp.linearCombination
β€”RingHomSurjective.ids
LinearMap.range_eq_top
Finsupp.range_linearCombination
span_range_eq_top_iff_surjective_fintypeLinearCombination πŸ“–mathematicalβ€”Submodule.span
Set.range
Top.top
Submodule
Submodule.instTop
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
Fintype.linearCombination
β€”RingHomSurjective.ids
LinearMap.range_eq_top
Fintype.range_linearCombination

---

← Back to Index