Documentation Verification Report

Pi

πŸ“ Source: Mathlib/LinearAlgebra/Finsupp/Pi.lean

Statistics

MetricCount
DefinitionsfinsuppUnique, lcoeFun, submodule, linearMap, map, prodOfFinsuppNat, splittingOfFunOnFintypeSurjective
7
TheoremsfinsuppUnique_apply, finsuppUnique_symm_apply, ker_mapRange, lcoeFun_apply, lcoeFun_comp_lsingle, mem_submodule_iff, range_mapRange_linearMap, linearMap_apply_apply, linearMap_comp, linearMap_id, linearMap_piSingle, map_apply_apply, map_comp, map_id, map_piSingle, exists_finsupp_nat_of_fin_fun_injective, exists_finsupp_nat_of_prod_injective, fst_prodOfFinsuppNat, leftInverse_splittingOfFunOnFintypeSurjective, prodOfFinsuppNat_injective, snd_prodOfFinsuppNat, splittingOfFunOnFintypeSurjective_injective, splittingOfFunOnFintypeSurjective_splits
23
Total30

Finsupp

Definitions

NameCategoryTheorems
lcoeFun πŸ“–CompOp
5 mathmath: Pi.counit_comp_finsuppLcoeFun, lcoeFun_comp_lsingle, lcoeFun_apply, Pi.comul_coe_finsupp, Pi.comul_comp_finsuppLcoeFun
submodule πŸ“–CompOp
3 mathmath: range_mapRange_linearMap, ker_mapRange, mem_submodule_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ker_mapRange πŸ“–mathematicalβ€”LinearMap.ker
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
RingHom.id
Semiring.toNonAssocSemiring
mapRange.linearMap
submodule
β€”Submodule.ext
LinearMap.map_zero
lcoeFun_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
Pi.addCommMonoid
module
Pi.Function.module
LinearMap.instFunLike
lcoeFun
instFunLike
β€”β€”
lcoeFun_comp_lsingle πŸ“–mathematicalβ€”LinearMap.comp
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
Pi.addCommMonoid
module
Pi.Function.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
lcoeFun
lsingle
LinearMap.single
β€”LinearMap.ext
RingHomCompTriple.ids
single_eq_pi_single
mem_submodule_iff πŸ“–mathematicalβ€”Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule
instAddCommMonoid
module
SetLike.instMembership
Submodule.setLike
submodule
DFunLike.coe
instFunLike
β€”β€”
range_mapRange_linearMap πŸ“–mathematicalLinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
Bot.bot
Submodule
Submodule.instBot
LinearMap.range
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
RingHomSurjective.ids
mapRange.linearMap
submodule
β€”Submodule.ext
RingHomSurjective.ids
LinearMap.map_zero
Mathlib.Tactic.Contrapose.contrapose₃
LinearMap.ker_eq_bot'
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Mathlib.Tactic.Contrapose.contraposeβ‚‚
ext

Finsupp.LinearEquiv

Definitions

NameCategoryTheorems
finsuppUnique πŸ“–CompOp
4 mathmath: finsuppUnique_symm_apply, Rep.ofMulActionSubsingletonIsoTrivial_inv_hom, Rep.ofMulActionSubsingletonIsoTrivial_hom_hom, finsuppUnique_apply

Theorems

NameKindAssumesProvesValidatesDepends On
finsuppUnique_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddCommMonoid
Finsupp.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
finsuppUnique
Finsupp.instFunLike
Unique.instInhabited
β€”RingHomInvPair.ids
finsuppUnique_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddCommMonoid
Finsupp.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
finsuppUnique
Finsupp.single
Unique.instInhabited
β€”Finsupp.unique_ext
RingHomInvPair.ids

FunOnFinite

Definitions

NameCategoryTheorems
linearMap πŸ“–CompOp
8 mathmath: linearMap_comp, continuous_linearMap, stdSimplex.map_coe, linearMap_apply_apply, linearMap_id, stdSimplex.image_linearMap, linearMap_piSingle, SimplexCategory.coe_toTopMap
map πŸ“–CompOp
5 mathmath: map_comp, map_piSingle, continuous_map, map_id, map_apply_apply

Theorems

NameKindAssumesProvesValidatesDepends On
linearMap_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.Function.module
LinearMap.instFunLike
linearMap
Finite.of_fintype
Finset.sum
Finset.filter
Finset.univ
β€”map_apply_apply
linearMap_comp πŸ“–mathematicalβ€”linearMap
LinearMap.comp
Pi.addCommMonoid
Pi.Function.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
β€”LinearMap.pi_ext'
RingHomCompTriple.ids
LinearMap.ext
linearMap_piSingle
linearMap_id πŸ“–mathematicalβ€”linearMap
LinearMap.id
Pi.addCommMonoid
Pi.Function.module
β€”LinearMap.pi_ext'
LinearMap.ext
RingHomCompTriple.ids
linearMap_piSingle
linearMap_piSingle πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.Function.module
LinearMap.instFunLike
linearMap
Pi.single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”map_piSingle
map_apply_apply πŸ“–mathematicalβ€”map
Finite.of_fintype
Finset.sum
Finset.filter
Finset.univ
β€”Finite.of_fintype
Equiv.surjective
Equiv.symm_apply_apply
Finsupp.univ_sum_single
Finsupp.mapDomain_finset_sum
Finset.sum_congr
Finsupp.mapDomain_single
Finsupp.coe_finset_sum
Finset.sum_apply
Finset.sum_filter
Finsupp.single_eq_of_ne'
Finsupp.single_eq_same
map_comp πŸ“–mathematicalβ€”mapβ€”Finsupp.mapDomain_comp
Equiv.symm_apply_apply
map_id πŸ“–mathematicalβ€”mapβ€”Finsupp.mapDomain_id
map_piSingle πŸ“–mathematicalβ€”map
Pi.single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Finsupp.equivFunOnFinite_symm_single
Finsupp.mapDomain_single
Finsupp.equivFunOnFinite_single

LinearMap

Definitions

NameCategoryTheorems
prodOfFinsuppNat πŸ“–CompOp
3 mathmath: prodOfFinsuppNat_injective, snd_prodOfFinsuppNat, fst_prodOfFinsuppNat
splittingOfFunOnFintypeSurjective πŸ“–CompOp
3 mathmath: leftInverse_splittingOfFunOnFintypeSurjective, splittingOfFunOnFintypeSurjective_splits, splittingOfFunOnFintypeSurjective_injective

Theorems

NameKindAssumesProvesValidatesDepends On
exists_finsupp_nat_of_fin_fun_injective πŸ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.Function.module
instFunLike
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddCommMonoid
Finsupp.module
β€”RingHomInvPair.ids
RingHomCompTriple.ids
exists_finsupp_nat_of_prod_injective
LinearEquiv.injective
exists_finsupp_nat_of_prod_injective πŸ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Prod.instAddCommMonoid
Prod.instModule
instFunLike
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddCommMonoid
Finsupp.module
β€”RingHomCompTriple.ids
prodOfFinsuppNat_injective
fst_prodOfFinsuppNat πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddCommMonoid
Prod.instAddCommMonoid
Finsupp.module
Prod.instModule
instFunLike
prodOfFinsuppNat
Finsupp.instFunLike
β€”RingHomInvPair.ids
Finset.sum_congr
Prod.fst_sum
Finset.sum_eq_single
comp.congr_simp
pow_succ'
pow_zero
leftInverse_splittingOfFunOnFintypeSurjective πŸ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
instFunLike
splittingOfFunOnFintypeSurjectiveβ€”congr_fun
RingHomCompTriple.ids
splittingOfFunOnFintypeSurjective_splits
prodOfFinsuppNat_injective πŸ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Prod.instAddCommMonoid
Prod.instModule
instFunLike
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddCommMonoid
Finsupp.module
prodOfFinsuppNat
β€”Finset.eq_empty_or_nonempty
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
Nat.strong_induction_on
Finsupp.single_add_erase
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
fst_prodOfFinsuppNat
Mathlib.Tactic.Contrapose.contraposeβ‚‚
snd_prodOfFinsuppNat πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddCommMonoid
Prod.instAddCommMonoid
Finsupp.module
Prod.instModule
instFunLike
prodOfFinsuppNat
AddMonoidHom
Finsupp.instAddZeroClass
AddMonoidHom.instFunLike
Finsupp.comapDomain.addMonoidHom
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
β€”add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
RingHomInvPair.ids
Finset.sum_congr
Prod.snd_sum
Function.Injective.injOn
Finset.sum_preimage
Nat.instCanonicallyOrderedAdd
comp.congr_simp
pow_zero
pow_succ'
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
splittingOfFunOnFintypeSurjective_injective πŸ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
instFunLike
splittingOfFunOnFintypeSurjectiveβ€”leftInverse_splittingOfFunOnFintypeSurjective
splittingOfFunOnFintypeSurjective_splits πŸ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
instFunLike
comp
RingHomCompTriple.ids
splittingOfFunOnFintypeSurjective
id
β€”pi_ext'
RingHomCompTriple.ids
ext_ring
RingHomInvPair.ids
Finsupp.linearEquivFunOnFinite_symm_single
Finsupp.sum_single_index
zero_smul
one_smul
Finsupp.single_eq_pi_single

---

← Back to Index