Documentation Verification Report

Span

📁 Source: Mathlib/LinearAlgebra/Finsupp/Span.lean

Statistics

MetricCount
Definitions0
Theoremsdisjoint_lsingle_lsingle, iInf_ker_lapply_le_bot, iSup_lsingle_range, ker_lsingle, lsingle_range_le_ker_lapply, range_lmapDomain, span_single_image, exists_finset_of_mem_iSup, mem_iSup_iff_exists_finset, mem_sSup_iff_exists_finset
10
Total10

Finsupp

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_lsingle_lsingle 📖mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Submodule.instPartialOrder
Submodule.instOrderBot
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Set.instMembership
LinearMap.range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
lsingle
Disjoint.mono
RingHomSurjective.ids
lsingle_range_le_ker_lapply
disjoint_compl_right
disjoint_iff_inf_le
le_trans
le_iInf
Disjoint.le_bot
inf_le_of_right_le
iInf_le_of_le
iInf_le
inf_le_of_left_le
iInf_ker_lapply_le_bot
iInf_ker_lapply_le_bot 📖mathematicalSubmodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
iInf
Submodule.instInfSet
LinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
lapply
Bot.bot
Submodule.instBot
instIsConcreteLE
ext
iSup_lsingle_range 📖mathematicaliSup
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
LinearMap.range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
lsingle
Top.top
Submodule.instTop
RingHomSurjective.ids
eq_top_iff
SetLike.le_def
instIsConcreteLE
sum_single
sum_mem
Submodule.addSubmonoidClass
Submodule.mem_iSup_of_mem
ker_lsingle 📖mathematicalLinearMap.ker
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
RingHom.id
Semiring.toNonAssocSemiring
lsingle
Bot.bot
Submodule
Submodule.instBot
LinearMap.ker_eq_bot_of_injective
single_injective
lsingle_range_le_ker_lapply 📖mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Set.instMembership
LinearMap.range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
lsingle
iInf
Submodule.instInfSet
LinearMap.ker
lapply
iSup_le
RingHomSurjective.ids
LinearMap.range_le_iff_comap
RingHomCompTriple.ids
Submodule.comap_iInf
iInf_congr_Prop
LinearMap.ker_comp
instIsConcreteLE
Disjoint.le_bot
single_eq_of_ne
range_lmapDomain 📖mathematicalLinearMap.range
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instAddCommMonoid
module
Semiring.toModule
RingHom.id
RingHomSurjective.ids
lmapDomain
Submodule.span
Set.range
single
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
le_antisymm
RingHomSurjective.ids
induction_linear
mapDomain_zero
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
Submodule.add_mem
lmapDomain_apply
mapDomain_single
smul_single_one
Submodule.smul_mem
Submodule.subset_span
Submodule.span_le
Set.range_subset_iff
span_single_image 📖mathematicalSubmodule.span
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Set.image
single
Submodule.map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
lsingle
RingHomSurjective.ids
Submodule.span_image

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
exists_finset_of_mem_iSup 📖mathematicalSubmodule
SetLike.instMembership
setLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Finset
Finset.instMembership
CompleteLattice.IsCompactElement.exists_finset_of_le_iSup
singleton_span_isCompactElement
mem_iSup_iff_exists_finset 📖mathematicalSubmodule
SetLike.instMembership
setLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Finset
Finset.instMembership
exists_finset_of_mem_iSup
iSup_mono
iSup_const_le
mem_sSup_iff_exists_finset 📖mathematicalSubmodule
SetLike.instMembership
setLike
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
iSup
Finset.instMembership
sSup_eq_iSup
iSup_subtype'
mem_iSup_iff_exists_finset
Finset.coe_map
Set.image_congr
iSup_congr_Prop
iSup_exists
Function.Injective.injOn
Subtype.coe_injective
iSup_subtype
iSup_and'

---

← Back to Index