Documentation Verification Report

Supported

πŸ“ Source: Mathlib/LinearAlgebra/Finsupp/Supported.lean

Statistics

MetricCount
DefinitionsrestrictDom, supported, supportedEquivFinsupp
3
Theoremscodisjoint_supported_supported, codisjoint_supported_supported_iff, disjoint_supported_supported, disjoint_supported_supported_iff, lmapDomain_disjoint_ker, lmapDomain_supported, mem_supported, mem_supported', mem_supported_support, range_restrictDom, restrictDom_apply, restrictDom_comp_subtype, single_mem_span_single, single_mem_supported, span_le_supported_biUnion_support, supportedEquivFinsupp_apply_apply, supportedEquivFinsupp_apply_support_val, supportedEquivFinsupp_symm_apply_coe, supportedEquivFinsupp_symm_apply_coe_apply, supportedEquivFinsupp_symm_apply_coe_support_val, supportedEquivFinsupp_symm_single, supported_comap_lmapDomain, supported_empty, supported_eq_span_single, supported_iInter, supported_iUnion, supported_inter, supported_mono, supported_union, supported_univ
30
Total33

Finsupp

Definitions

NameCategoryTheorems
restrictDom πŸ“–CompOp
3 mathmath: restrictDom_apply, restrictDom_comp_subtype, range_restrictDom
supported πŸ“–CompOp
44 mathmath: mem_supported_support, restrictDom_apply, supportedEquivFinsupp_symm_single, mem_supported, supported_inter, span_le_supported_biUnion_support, span_image_eq_map_linearCombination, supported_eq_span_single, supported_univ, supported_comap_lmapDomain, Module.Basis.repr_range, MvPolynomial.weightedHomogeneousSubmodule_eq_finsupp_supported, codisjoint_supported_supported, supported_union, supported_iInter, linearDepOn_iff, linearIndepOn_iff_disjoint, Submodule.set_smul_eq_map, linearCombinationOn_range, restrictDom_comp_subtype, disjoint_supported_supported, supportedEquivFinsupp_symm_apply_coe_support_val, linearCombination_restrict, supported_empty, codisjoint_supported_supported_iff, supported_mono, MvPolynomial.homogeneousSubmodule_eq_finsupp_supported, supportedEquivFinsupp_symm_apply_coe, supportedEquivFinsupp_apply_support_val, supported_iUnion, linearDepOn_iffβ‚›, mem_span_image_iff_linearCombination, disjoint_supported_supported_iff, linearDepOn_iff', supportedEquivFinsupp_symm_apply_coe_apply, lmapDomain_disjoint_ker, supportedEquivFinsupp_apply_apply, single_mem_supported, linearDepOn_iff'β‚›, range_restrictDom, linearIndepOn_iff_linearCombinationOnβ‚›, linearIndepOn_iff_linearCombinationOn, mem_supported', lmapDomain_supported
supportedEquivFinsupp πŸ“–CompOp
7 mathmath: supportedEquivFinsupp_symm_single, supportedEquivFinsupp_symm_apply_coe_support_val, linearCombination_restrict, supportedEquivFinsupp_symm_apply_coe, supportedEquivFinsupp_apply_support_val, supportedEquivFinsupp_symm_apply_coe_apply, supportedEquivFinsupp_apply_apply

Theorems

NameKindAssumesProvesValidatesDepends On
codisjoint_supported_supported πŸ“–mathematicalCodisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instOrderTop
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Submodule.instPartialOrder
Submodule.instOrderTop
supported
β€”codisjoint_iff
eq_top_iff
supported_union
supported_univ
le_refl
codisjoint_supported_supported_iff πŸ“–mathematicalβ€”Codisjoint
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Submodule.instPartialOrder
Submodule.instOrderTop
supported
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instOrderTop
β€”codisjoint_iff
eq_top_iff
exists_ne
support_single_ne_zero
Finset.coe_singleton
Submodule.eq_top_iff'
supported_union
codisjoint_supported_supported
disjoint_supported_supported πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Submodule.instPartialOrder
Submodule.instOrderBot
supported
β€”disjoint_iff
supported_inter
Set.disjoint_iff_inter_eq_empty
supported_empty
disjoint_supported_supported_iff πŸ“–mathematicalβ€”Disjoint
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Submodule.instPartialOrder
Submodule.instOrderBot
supported
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Set.disjoint_left
exists_ne
Disjoint.le_bot
single_mem_supported
single_eq_zero
Submodule.mem_bot
disjoint_supported_supported
lmapDomain_disjoint_ker πŸ“–mathematicalβ€”Disjoint
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Submodule.instPartialOrder
Submodule.instOrderBot
supported
LinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
lmapDomain
β€”disjoint_iff_inf_le
ext
mapDomain.eq_1
lmapDomain_apply
LinearMap.mem_ker
SetLike.mem_coe
single_eq_same
sum_eq_single
single_eq_of_ne'
single_zero
sum_apply
mem_support_iff
lmapDomain_supported πŸ“–mathematicalβ€”Submodule.map
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
lmapDomain
supported
Set.image
β€”isEmpty_or_nonempty
RingHomSurjective.ids
Submodule.map.congr_simp
Set.eq_empty_of_isEmpty
instIsEmptySubtype
supported_empty
Submodule.map_bot
Set.image_empty
le_antisymm
Submodule.map_le_iff_le_comap
le_trans
supported_mono
Set.subset_preimage_image
supported_comap_lmapDomain
Finset.mem_image
mapDomain_support
Function.invFunOn_mem
RingHomCompTriple.ids
LinearMap.comp_apply
lmapDomain_comp
mapDomain_congr
Function.invFunOn_eq
mapDomain_id
mem_supported πŸ“–mathematicalβ€”Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule
instAddCommMonoid
module
SetLike.instMembership
Submodule.setLike
supported
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
support
β€”β€”
mem_supported' πŸ“–mathematicalβ€”Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule
instAddCommMonoid
module
SetLike.instMembership
Submodule.setLike
supported
DFunLike.coe
instFunLike
β€”β€”
mem_supported_support πŸ“–mathematicalβ€”Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule
instAddCommMonoid
module
SetLike.instMembership
Submodule.setLike
supported
SetLike.coe
Finset
Finset.instSetLike
support
β€”mem_supported
subset_refl
Set.instReflSubset
range_restrictDom πŸ“–mathematicalβ€”LinearMap.range
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule
instAddCommMonoid
module
SetLike.instMembership
Submodule.setLike
supported
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
restrictDom
Top.top
Submodule.instTop
β€”RingHomSurjective.ids
LinearMap.range_eq_top
LinearMap.congr_fun
RingHomCompTriple.ids
restrictDom_comp_subtype
restrictDom_apply πŸ“–mathematicalβ€”Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule
instAddCommMonoid
module
SetLike.instMembership
Submodule.setLike
supported
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Submodule.addCommMonoid
Submodule.module
LinearMap.instFunLike
restrictDom
filter
Set
Set.instMembership
β€”β€”
restrictDom_comp_subtype πŸ“–mathematicalβ€”LinearMap.comp
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule
instAddCommMonoid
module
SetLike.instMembership
Submodule.setLike
supported
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
restrictDom
Submodule.subtype
LinearMap.id
β€”LinearMap.ext
RingHomCompTriple.ids
ext
filter_apply_pos
filter_apply_neg
mem_supported'
single_mem_span_single πŸ“–mathematicalβ€”Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Submodule
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
single
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Set
Set.instMembership
β€”Finset.coe_singleton
support_single_ne_zero
one_ne_zero'
NeZero.one
mem_supported
supported_eq_span_single
Submodule.subset_span
Set.mem_image_of_mem
single_mem_supported πŸ“–mathematicalSet
Set.instMembership
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule
instAddCommMonoid
module
SetLike.instMembership
Submodule.setLike
supported
single
β€”Set.Subset.trans
support_single_subset
Finset.singleton_subset_set_iff
span_le_supported_biUnion_support πŸ“–mathematicalβ€”Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.span
supported
Set.iUnion
Set
Set.instMembership
SetLike.coe
Finset
Finset.instSetLike
support
β€”Submodule.span_le
Set.subset_biUnion_of_mem
supportedEquivFinsupp_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
Set.Elem
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Submodule
instAddCommMonoid
module
SetLike.instMembership
Submodule.setLike
supported
Submodule.addCommMonoid
Submodule.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
supportedEquivFinsupp
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
support
Set.instMembership
β€”RingHomInvPair.ids
supportedEquivFinsupp_apply_support_val πŸ“–mathematicalβ€”Finset.val
Set
Set.instMembership
support
Set.Elem
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Finsupp
Submodule
instAddCommMonoid
module
SetLike.instMembership
Submodule.setLike
supported
Submodule.addCommMonoid
Submodule.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
supportedEquivFinsupp
Multiset.map
Finset
Finset.instMembership
Finset.filter
Classical.decPred
Set.instHasSubset
SetLike.coe
Finset.instSetLike
Multiset.attach
Multiset.filter
β€”RingHomInvPair.ids
supportedEquivFinsupp_symm_apply_coe πŸ“–mathematicalβ€”Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule
instAddCommMonoid
module
SetLike.instMembership
Submodule.setLike
supported
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Set.Elem
Submodule.addCommMonoid
Submodule.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
supportedEquivFinsupp
extendDomain
Set
Set.instMembership
β€”RingHomInvPair.ids
restrictSupportEquiv_symm_apply_coe
supportedEquivFinsupp_symm_apply_coe_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
Submodule
instAddCommMonoid
module
SetLike.instMembership
Submodule.setLike
supported
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Set.Elem
Submodule.addCommMonoid
Submodule.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
supportedEquivFinsupp
Set
Set.instMembership
Classical.decPred
β€”RingHomInvPair.ids
supportedEquivFinsupp_symm_apply_coe_support_val πŸ“–mathematicalβ€”Finset.val
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp
Submodule
instAddCommMonoid
module
SetLike.instMembership
Submodule.setLike
supported
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Set.Elem
Submodule.addCommMonoid
Submodule.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
supportedEquivFinsupp
Multiset.map
Set
Set.instMembership
β€”Multiset.add_zero
supportedEquivFinsupp_symm_single πŸ“–mathematicalβ€”Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule
instAddCommMonoid
module
SetLike.instMembership
Submodule.setLike
supported
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Set.Elem
Submodule.addCommMonoid
Submodule.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
supportedEquivFinsupp
single
Set
Set.instMembership
β€”RingHomInvPair.ids
supportedEquivFinsupp_symm_apply_coe
extendDomain_single
supported_comap_lmapDomain πŸ“–mathematicalβ€”Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
supported
Set.preimage
Submodule.comap
RingHom.id
Semiring.toNonAssocSemiring
lmapDomain
β€”Set.Subset.trans
mapDomain_support
Finset.coe_image
Set.image_subset_iff
supported_empty πŸ“–mathematicalβ€”supported
Set
Set.instEmptyCollection
Bot.bot
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Submodule.instBot
β€”eq_bot_iff
Submodule.mem_bot
ext
supported_eq_span_single πŸ“–mathematicalβ€”supported
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.span
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Set.image
single
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Submodule.span_eq_of_le
single_mem_supported
SetLike.le_def
instIsConcreteLE
sum_single
sum_mem
Submodule.addSubmonoidClass
smul_single
mul_one
Submodule.smul_mem
Submodule.subset_span
Set.mem_image_of_mem
supported_iInter πŸ“–mathematicalβ€”supported
Set.iInter
iInf
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Submodule.instInfSet
β€”Submodule.ext
supported_iUnion πŸ“–mathematicalβ€”supported
Set.iUnion
iSup
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
β€”le_antisymm
RingHomSurjective.ids
RingHomCompTriple.ids
LinearMap.range_le_iff_comap
eq_top_iff
induction
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
filter_single_of_pos
le_iSup
single_mem_supported
filter_single_of_neg
Submodule.range_subtype
Submodule.map_top
range_restrictDom
LinearMap.range_comp
iSup_le
supported_mono
Set.subset_iUnion
supported_inter πŸ“–mathematicalβ€”supported
Set
Set.instInter
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Submodule.instMin
β€”Set.inter_eq_iInter
supported_iInter
iInf_bool_eq
supported_mono πŸ“–mathematicalSet
Set.instHasSubset
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
supported
β€”Set.Subset.trans
supported_union πŸ“–mathematicalβ€”supported
Set
Set.instUnion
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
β€”Set.union_eq_iUnion
supported_iUnion
iSup_bool_eq
supported_univ πŸ“–mathematicalβ€”supported
Set.univ
Top.top
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
module
Submodule.instTop
β€”eq_top_iff
Set.subset_univ

---

← Back to Index