Documentation Verification Report

Int

📁 Source: Mathlib/LinearAlgebra/FreeModule/Int.lean

Statistics

MetricCount
Definitions0
TheoremsaddSubgroup_index_ne_zero_iff, subgroup_index_ne_zero_iff, submodule_toAddSubgroup_index_ne_zero_iff, toAddSubgroup_index_eq_ite, toAddSubgroup_index_eq_pow_mul_prod, toAddSubgroup_index_ne_zero_iff
6
Total6

Int

Theorems

NameKindAssumesProvesValidatesDepends On
addSubgroup_index_ne_zero_iff 📖mathematicalAddEquiv
AddSubgroup
Pi.addGroup
instAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.add
Pi.instAdd
RingHomInvPair.ids
submodule_toAddSubgroup_index_ne_zero_iff
subgroup_index_ne_zero_iff 📖mathematicalMulEquiv
Subgroup
Pi.group
Multiplicative
Multiplicative.group
instAddGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.mul
Pi.instMul
Multiplicative.mul
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
Subgroup.comap_equiv_eq_map_symm
Subgroup.index_comap_of_surjective
MulEquiv.surjective
Subgroup.index_toAddSubgroup
addSubgroup_index_ne_zero_iff
submodule_toAddSubgroup_index_ne_zero_iff 📖mathematicalLinearEquiv
instSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Submodule
Pi.addCommMonoid
instAddCommMonoid
AddCommGroup.toIntModule
Pi.addCommGroup
instAddCommGroup
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.addCommGroup
instRing
RingHomInvPair.ids
instIsDomain
EuclideanDomain.to_principal_ideal_domain
Module.Basis.SmithNormalForm.toAddSubgroup_index_ne_zero_iff
card_eq_of_linearEquiv
invariantBasisNumber_of_nontrivial_of_commRing
instNontrivial
RingHomCompTriple.ids
Finite.of_fintype
Fintype.card_fin

Module.Basis.SmithNormalForm

Theorems

NameKindAssumesProvesValidatesDepends On
toAddSubgroup_index_eq_ite 📖mathematicalAddSubgroup.index
AddCommGroup.toAddGroup
Submodule.toAddSubgroup
CommRing.toRing
Fintype.card
Finset.prod
Nat.instCommMonoid
Finset.univ
Fin.fintype
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.span
Set
Set.instSingletonSet
a
toAddSubgroup_index_eq_pow_mul_prod
Nat.card_eq_zero_of_infinite
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
pow_zero
one_mul
Ne.lt_of_le
Fintype.card_fin
Fintype.card_le_of_embedding
MulZeroClass.zero_mul
toAddSubgroup_index_eq_pow_mul_prod 📖mathematicalAddSubgroup.index
AddCommGroup.toAddGroup
Submodule.toAddSubgroup
CommRing.toRing
Monoid.toNatPow
Nat.instMonoid
Nat.card
Fintype.card
Finset.prod
Nat.instCommMonoid
Finset.univ
Fin.fintype
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.span
Set
Set.instSingletonSet
a
RingHomSurjective.ids
RingHomInvPair.ids
Finite.of_fintype
RingHomSurjective.invPair
LinearEquiv.submoduleMap_apply
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
Module.Basis.repr_self
Finsupp.single_eq_pi_single
Pi.single_apply
mul_ite
mul_one
MulZeroClass.mul_zero
SemilinearEquivClass.toAddEquivClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
AddEquiv.surjective
AddSubgroup.comap_equiv_eq_map_symm
LinearEquiv.coe_toAddEquiv_symm
AddEquiv.symm_symm
Submodule.map_toAddSubgroup
AddSubgroup.index_comap_of_surjective
AddSubgroup.ext
Module.Basis.mem_submodule_iff'
Finset.sum_congr
Finset.sum_apply
Finset.sum_eq_single
Function.Embedding.injective
instIsEmptyFalse
dvd_mul_left
Finset.sum_const_zero
dvd_refl
Function.instEmbeddingLikeEmbedding
Classical.choose_eq
smul_ite
smul_zero
mul_comm
zero_dvd_iff
Ideal.span_zero
AddSubgroup.index_pi
Finset.prod_congr
AddSubgroup.index_bot
Finset.prod_dite
Finset.prod_const
Finset.card_attach
Finset.compl_filter
Fintype.card_fin
Finset.univ_filter_exists
Finset.card_image_of_injective
Finset.card_compl
Finset.attach_eq_univ
Finset.ext
Finset.prod_map
toAddSubgroup_index_ne_zero_iff 📖mathematicalFintype.cardtoAddSubgroup_index_eq_ite
Int.infinite
Finset.prod_congr
Module.Basis.ne_zero
Int.instNontrivial
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
zero_smul
Ideal.span_singleton_toAddSubgroup_eq_zmultiples
Int.index_zmultiples
Nat.instNontrivial
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd

---

← Back to Index