Documentation Verification Report

PID

πŸ“ Source: Mathlib/LinearAlgebra/FreeModule/PID.lean

Statistics

MetricCount
DefinitionsringBasis, selfBasis, smithCoeffs, smithNormalForm, SmithNormalForm, a, bM, bN, f, basisOfFiniteTypeTorsionFree, basisOfFiniteTypeTorsionFree', basisOfPid, basisOfPidOfLE, basisOfPidOfLESpan, smithNormalForm, smithNormalFormBotBasis, smithNormalFormCoeffs, smithNormalFormOfLE, smithNormalFormOfRankEq, smithNormalFormTopBasis
20
Theoremsexists_smith_normal_form, finrank_eq_finrank, selfBasis_def, smithCoeffs_ne_zero, coord_apply_embedding_eq_smul_coord, le_ker_coord_of_notMem_range, repr_apply_embedding_eq_repr_smul, repr_comp_embedding_eq_smul, repr_eq_zero_of_notMem_range, snf, toMatrix_restrict_eq_toMatrix, free_iff_isTorsionFree, free_of_finite_type_torsion_free, free_of_finite_type_torsion_free', basisOfPid_bot, basis_of_pid_aux, exists_smith_normal_form_of_le, exists_smith_normal_form_of_rank_eq, nonempty_basis_of_pid, smithNormalFormBotBasis_def, smithNormalFormCoeffs_ne_zero, dvd_generator_iff, eq_bot_of_generator_maximal_map_eq_zero, eq_bot_of_generator_maximal_submoduleImage_eq_zero, generator_maximal_submoduleImage_dvd, instFreeSubtypeMemIdealOfFiniteOfIsTorsionFree
26
Total46

Ideal

Definitions

NameCategoryTheorems
ringBasis πŸ“–CompOp
1 mathmath: selfBasis_def
selfBasis πŸ“–CompOp
1 mathmath: selfBasis_def
smithCoeffs πŸ“–CompOp
3 mathmath: selfBasis_def, associated_norm_prod_smith, instFiniteDimensionalQuotientPolynomialIdealSpanSingletonSetSmithCoeffs
smithNormalForm πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_smith_normal_form πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
Module.Basis
Submodule.addCommMonoid
Submodule.module'
Algebra.toSMul
Algebra.toModule
IsScalarTower.right
Module.Basis.instFunLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Submodule.exists_smith_normal_form_of_rank_eq
IsScalarTower.right
finrank_eq_finrank
finrank_eq_finrank πŸ“–mathematicalβ€”Module.finrank
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
SetLike.instMembership
Submodule.setLike
Submodule.restrictScalars
Semiring.toModule
Algebra.toSMul
IsScalarTower.right
Submodule.addCommMonoid
Submodule.module
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”IsScalarTower.right
nonempty_fintype
Module.finrank_eq_card_basis
IsNoetherianRing.strongRankCondition
IsDomain.toNontrivial
PrincipalIdealRing.isNoetherianRing
rank_eq
LinearMap.IsScalarTower.compatibleSMul
Submodule.restrictScalars.isScalarTower
Submodule.isScalarTower'
selfBasis_def πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
Module.Basis
Submodule.addCommMonoid
Submodule.module'
Algebra.toSMul
Algebra.toModule
IsScalarTower.right
Module.Basis.instFunLike
selfBasis
smithCoeffs
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ringBasis
β€”IsScalarTower.right
exists_smith_normal_form
smithCoeffs_ne_zero πŸ“–β€”β€”β€”β€”Module.Basis.ne_zero
IsScalarTower.right
IsDomain.toNontrivial
Subtype.coe_injective
selfBasis_def
zero_smul

Module

Definitions

NameCategoryTheorems
basisOfFiniteTypeTorsionFree πŸ“–CompOpβ€”
basisOfFiniteTypeTorsionFree' πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
free_iff_isTorsionFree πŸ“–mathematicalβ€”Free
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
IsTorsionFree
β€”Free.instIsTorsionFree
free_of_finite_type_torsion_free'
free_of_finite_type_torsion_free πŸ“–mathematicalSubmodule.span
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set.range
Top.top
Submodule
Submodule.instTop
Freeβ€”nonempty_fintype
Free.of_basis
free_of_finite_type_torsion_free' πŸ“–mathematicalβ€”Free
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”Free.of_basis

Module.Basis

Definitions

NameCategoryTheorems
SmithNormalForm πŸ“–CompDataβ€”

Module.Basis.SmithNormalForm

Definitions

NameCategoryTheorems
a πŸ“–CompOp
6 mathmath: repr_apply_embedding_eq_repr_smul, snf, toAddSubgroup_index_eq_pow_mul_prod, repr_comp_embedding_eq_smul, toAddSubgroup_index_eq_ite, coord_apply_embedding_eq_smul_coord
bM πŸ“–CompOp
7 mathmath: repr_apply_embedding_eq_repr_smul, snf, le_ker_coord_of_notMem_range, repr_comp_embedding_eq_smul, toMatrix_restrict_eq_toMatrix, repr_eq_zero_of_notMem_range, coord_apply_embedding_eq_smul_coord
bN πŸ“–CompOp
5 mathmath: repr_apply_embedding_eq_repr_smul, snf, repr_comp_embedding_eq_smul, toMatrix_restrict_eq_toMatrix, coord_apply_embedding_eq_smul_coord
f πŸ“–CompOp
5 mathmath: repr_apply_embedding_eq_repr_smul, snf, repr_comp_embedding_eq_smul, toMatrix_restrict_eq_toMatrix, coord_apply_embedding_eq_smul_coord

Theorems

NameKindAssumesProvesValidatesDepends On
coord_apply_embedding_eq_smul_coord πŸ“–mathematicalβ€”LinearMap.comp
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Submodule.module
Semiring.toModule
RingHom.id
RingHomCompTriple.ids
Module.Basis.coord
bM
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
f
Submodule.subtype
LinearMap
LinearMap.instSMul
instDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.to_smulCommClass
Algebra.id
a
bN
β€”LinearMap.ext
RingHomCompTriple.ids
Algebra.to_smulCommClass
RingHomInvPair.ids
IsScalarTower.left
repr_apply_embedding_eq_repr_smul
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
Pi.smul_apply
le_ker_coord_of_notMem_range πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
f
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
LinearMap.ker
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
Module.Basis.coord
bM
β€”repr_eq_zero_of_notMem_range
repr_apply_embedding_eq_repr_smul πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
bM
Submodule
SetLike.instMembership
Submodule.setLike
Function.Embedding
Function.instFunLikeEmbedding
f
Submodule.addCommMonoid
Submodule.module
bN
Submodule.smul
Algebra.toSMul
Algebra.id
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
IsScalarTower.left
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
a
β€”RingHomInvPair.ids
IsScalarTower.left
Module.Basis.mem_submodule_iff
Subtype.coe_eta
map_finsuppSum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
Module.Basis.repr_self
Finsupp.smul_single
mul_one
Finsupp.sum_single
snf
Finsupp.sum_apply
Finsupp.single_apply
Function.instEmbeddingLikeEmbedding
Finsupp.sum_ite_eq'
mul_comm
mul_eq_zero_of_right
repr_comp_embedding_eq_smul πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
bM
Submodule
SetLike.instMembership
Submodule.setLike
Function.Embedding
Function.instFunLikeEmbedding
f
Pi.smul'
Algebra.toSMul
Algebra.id
a
Submodule.addCommMonoid
Submodule.module
bN
β€”RingHomInvPair.ids
IsScalarTower.left
repr_apply_embedding_eq_repr_smul
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
Pi.smul_apply
repr_eq_zero_of_notMem_range πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
f
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
bM
Submodule
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”RingHomInvPair.ids
Module.Basis.mem_submodule_iff
snf
map_finsuppSum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
Module.Basis.repr_self
Finsupp.smul_single
mul_one
Finsupp.sum_apply
Finsupp.single_eq_of_ne'
Finsupp.sum_fun_zero
snf πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
DFunLike.coe
Module.Basis
Submodule.addCommMonoid
Submodule.module
Module.Basis.instFunLike
bN
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
a
bM
Function.Embedding
Function.instFunLikeEmbedding
f
β€”β€”
toMatrix_restrict_eq_toMatrix πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearEquiv
RingHomInvPair.ids
Submodule.addCommMonoid
Submodule.module
Matrix
LinearMap.addCommMonoid
Matrix.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Matrix.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearMap.toMatrix
Fin.fintype
Finite.of_fintype
bN
LinearMap.restrict
bM
Function.Embedding
Function.instFunLikeEmbedding
f
β€”RingHomInvPair.ids
smulCommClass_self
Finite.of_fintype
LinearMap.toMatrix_apply
IsScalarTower.left
repr_apply_embedding_eq_repr_smul
snf
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass

Submodule

Definitions

NameCategoryTheorems
basisOfPid πŸ“–CompOp
1 mathmath: basisOfPid_bot
basisOfPidOfLE πŸ“–CompOpβ€”
basisOfPidOfLESpan πŸ“–CompOpβ€”
smithNormalForm πŸ“–CompOpβ€”
smithNormalFormBotBasis πŸ“–CompOp
1 mathmath: smithNormalFormBotBasis_def
smithNormalFormCoeffs πŸ“–CompOp
1 mathmath: smithNormalFormBotBasis_def
smithNormalFormOfLE πŸ“–CompOpβ€”
smithNormalFormOfRankEq πŸ“–CompOpβ€”
smithNormalFormTopBasis πŸ“–CompOp
1 mathmath: smithNormalFormBotBasis_def

Theorems

NameKindAssumesProvesValidatesDepends On
basisOfPid_bot πŸ“–mathematicalβ€”basisOfPid
Bot.bot
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instBot
Module.Basis
SetLike.instMembership
setLike
addCommMonoid
module
Module.Basis.empty
Unique.instSubsingleton
uniqueBot
Fin.isEmpty'
β€”Unique.instSubsingleton
Fin.isEmpty'
invariantBasisNumber_of_nontrivial_of_commRing
IsDomain.toNontrivial
Sigma.eq
Module.Basis.eq_of_apply_eq
Fintype.card_fin
Fintype.card_eq_zero
Fintype.card_eq
basis_of_pid_aux πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
setLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
Module.Basis
addCommMonoid
module
Module.Basis.instFunLike
β€”set_has_maximal_iff_noetherian
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
Module.Finite.self
Set.mem_range
IsPrincipalIdealRing.principal
IsPrincipal.generator_mem
eq_bot_of_generator_maximal_submoduleImage_eq_zero
LinearMap.mem_submoduleImage_of_le
generator_maximal_submoduleImage_dvd
nonempty_fintype
sum_mem
smul_mem
IsScalarTower.left
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finset.sum_congr
map_smul
SemilinearMapClass.toMulActionSemiHomClass
RingHomInvPair.ids
Module.Basis.sum_repr
Finset.smul_sum
SemigroupAction.mul_smul
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
LinearMap.map_smul
mul_one
one_ne_zero
NeZero.one
IsDomain.toNontrivial
RingHomSurjective.ids
RingHomCompTriple.ids
map_subtype_le
mem_map
Subtype.coe_injective
map_add
SemilinearMapClass.toAddHomClass
LinearMap.mem_ker
add_zero
map_zero
AddMonoidHomClass.toZeroHomClass
IsDomain.to_noZeroDivisors
mul_eq_zero
mul_comm
IsPrincipal.generator_submoduleImage_dvd_of_mem
sub_mem
addSubgroupClass
map_sub
smul_eq_mul
sub_self
sub_eq_add_neg
neg_smul
Module.Basis.coe_mkFinConsOfLE
Fin.cons_zero
Fin.cons_succ
exists_smith_normal_form_of_le πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
setLike
DFunLike.coe
Module.Basis
addCommMonoid
module
Module.Basis.instFunLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”nonempty_fintype
IsNoetherianRing.strongRankCondition
IsDomain.toNontrivial
PrincipalIdealRing.isNoetherianRing
Unique.instSubsingleton
Fin.isEmpty'
basis_of_pid_aux
Finite.of_fintype
exists_smith_normal_form_of_rank_eq πŸ“–mathematicalModule.finrank
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
addCommMonoid
module
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”nonempty_fintype
Fintype.bijective_iff_injective_and_card
Function.Embedding.injective
Fintype.card_fin
Equiv.apply_symm_apply
Module.Basis.coe_reindex
nonempty_basis_of_pid πŸ“–mathematicalβ€”Module.Basis
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
addCommMonoid
module
β€”nonempty_fintype
IsNoetherianRing.strongRankCondition
IsDomain.toNontrivial
PrincipalIdealRing.isNoetherianRing
RingHomInvPair.ids
Unique.instSubsingleton
Fin.isEmpty'
basis_of_pid_aux
Finite.of_fintype
le_top
smithNormalFormBotBasis_def πŸ“–mathematicalModule.finrank
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
addCommMonoid
module
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
smithNormalFormBotBasis
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smithNormalFormCoeffs
smithNormalFormTopBasis
β€”exists_smith_normal_form_of_rank_eq
smithNormalFormCoeffs_ne_zero πŸ“–β€”Module.finrank
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
addCommMonoid
module
β€”β€”Module.Basis.ne_zero
IsDomain.toNontrivial
Subtype.coe_injective
smithNormalFormBotBasis_def
zero_smul

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_generator_iff πŸ“–mathematicalIdeal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Submodule.IsPrincipal.generator
Ideal.span
Set
Set.instSingletonSet
β€”Ideal.span_singleton_le_iff_mem
Submodule.IsPrincipal.span_singleton_generator
Submodule.span_singleton_le_iff_mem
eq_bot_of_generator_maximal_map_eq_zero πŸ“–mathematicalSubmodule
Ring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Semiring.toModule
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.map
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Submodule.IsPrincipal.generator
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Bot.bot
Submodule.instBot
β€”RingHomSurjective.ids
Submodule.eq_bot_iff
Module.Basis.ext_elem
RingHomInvPair.ids
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
Finsupp.zero_apply
RingHomCompTriple.ids
not_bot_lt_iff
Submodule.IsPrincipal.eq_bot_iff_generator_eq_zero
eq_bot_of_generator_maximal_submoduleImage_eq_zero πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Semiring.toModule
Preorder.toLT
LinearMap.submoduleImage
Submodule.IsPrincipal.generator
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Bot.bot
Submodule.instBot
β€”Submodule.eq_bot_iff
Submodule.mk_eq_zero
Module.Basis.ext_elem
RingHomInvPair.ids
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
Finsupp.zero_apply
RingHomCompTriple.ids
not_bot_lt_iff
Submodule.IsPrincipal.eq_bot_iff_generator_eq_zero
LinearMap.mem_submoduleImage_of_le
generator_maximal_submoduleImage_dvd πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
Preorder.toLT
LinearMap.submoduleImage
SetLike.instMembership
Submodule.setLike
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Submodule.addCommMonoid
Submodule.module
LinearMap.instFunLike
Submodule.IsPrincipal.generator
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
β€”IsPrincipalIdealRing.principal
Submodule.IsPrincipal.mem_iff_generator_dvd
Submodule.subset_span
Set.mem_insert
Set.mem_insert_of_mem
Set.mem_singleton
dvd_trans
dvd_generator_iff
Ideal.span.eq_1
Submodule.IsPrincipal.span_singleton_generator
Submodule.mem_span_insert
Submodule.IsPrincipal.generator_mem
Submodule.mem_span_singleton
Algebra.to_smulCommClass
Submodule.span_le
Set.singleton_subset_iff
SetLike.mem_coe
LinearMap.mem_submoduleImage_of_le
le_antisymm
LE.le.trans
le_of_eq
LE.le.eq_of_not_lt'
le_trans
Ideal.span_singleton_le_span_singleton
instFreeSubtypeMemIdealOfFiniteOfIsTorsionFree πŸ“–mathematicalβ€”Module.Free
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.addCommMonoid
Submodule.module'
Algebra.toSMul
Algebra.toModule
IsScalarTower.right
β€”IsScalarTower.right
Module.free_of_finite_type_torsion_free'

---

← Back to Index