Documentation Verification Report

Basic

πŸ“ Source: Mathlib/LinearAlgebra/LinearIndependent/Basic.lean

Statistics

MetricCount
Definitions0
Theoremscomp_of_image, id_image, id_imageβ‚›, id_union, image, image_of_comp, map_injOn, union, LinearIndepOn_iff_linearIndepOn_image_injOn, disjoint_span_image, eq_coords_of_eq, eq_of_smul_apply_eq_smul_apply, fin_cons', group_smul, group_smul_iff, linearCombination_ne_of_notMem_support, map, map', map_injOn, map_of_injective_injective, map_of_injective_injectiveβ‚›, map_of_surjective_injective, map_of_surjective_injectiveβ‚›, notMem_span_image, restrict_scalars, restrict_scalars', sum_type, units_smul, units_smul_iff, linearIndependent_iff, range_ker_disjoint, eq_of_linearIndepOn_id_of_span_subtype, le_of_span_le_span, linearIndepOn_congr, linearIndepOn_id_union_iff, linearIndepOn_of_finite, linearIndepOn_singleton_iff, linearIndepOn_union_iff, linearIndependent_finset_map_embedding_subtype, linearIndependent_monoidHom, linearIndependent_span, linearIndependent_subsingleton_index_iff, linearIndependent_sum, linearIndependent_unique, linearIndependent_unique_iff, span_le_span_iff, surjective_of_linearIndependent_of_span
47
Total47

LinearIndepOn

Theorems

NameKindAssumesProvesValidatesDepends On
comp_of_image πŸ“–β€”LinearIndepOn
Set.image
Set.InjOn
β€”β€”LinearIndependent.comp
Equiv.injective
id_image πŸ“–mathematicalLinearIndepOnSet.imageβ€”image_of_comp
id_imageβ‚› πŸ“–mathematicalLinearIndepOn
Set.InjOn
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
SetLike.coe
Submodule
Submodule.setLike
Submodule.span
Set.imageβ€”id_image
map_injOn
Set.image_congr
Set.image_id'
id_union πŸ“–mathematicalLinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Disjoint
Submodule
Submodule.instPartialOrder
Submodule.instOrderBot
Submodule.span
Set
Set.instUnion
β€”union
Set.image_congr
Set.image_id'
image πŸ“–mathematicalLinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Disjoint
Submodule
Submodule.instPartialOrder
Submodule.instOrderBot
Submodule.span
LinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
Set.image
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”id_imageβ‚›
LinearMap.injOn_of_disjoint_ker
le_rfl
image_of_comp πŸ“–mathematicalLinearIndepOnSet.imageβ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Set.injOn_iff_injective
Function.Injective.of_comp
LinearIndependent.injective
linearIndependent_equiv'
map_injOn πŸ“–β€”LinearIndepOn
Set.InjOn
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
SetLike.coe
Submodule
Submodule.setLike
Submodule.span
Set.image
β€”β€”LinearMap.linearIndepOn_iff_of_injOn
union πŸ“–mathematicalLinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Disjoint
Submodule
Submodule.instPartialOrder
Submodule.instOrderBot
Submodule.span
Set.image
Set
Set.instUnion
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
LinearIndependent.sum_type
Set.image_eq_range
Disjoint.of_image
Disjoint.of_spanβ‚€
zero_notMem_image
eq_1
Equiv.Set.union_apply_left
Equiv.Set.union_apply_right
LinearIndependent.comp
Equiv.injective

LinearIndependent

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_span_image πŸ“–mathematicalLinearIndependent
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Submodule
Submodule.instPartialOrder
Submodule.instOrderBot
Submodule.span
Set.image
β€”Submodule.disjoint_def
Finsupp.disjoint_supported_supported
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
finsuppLinearCombination_injective
eq_coords_of_eq πŸ“–β€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Finset.sum
Finset.univ
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”sub_eq_zero
linearIndependent_iff'
Finset.sum_congr
Finset.sum_sub_distrib
Finset.mem_univ
eq_of_smul_apply_eq_smul_apply πŸ“–β€”LinearIndependent
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”Finsupp.sum_single_index
zero_smul
Finsupp.single_eq_single_iff
fin_cons' πŸ“–mathematicalLinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Fin.consβ€”Fintype.linearIndependent_iff
sum_mem
Submodule.addSubmonoidClass
Submodule.smul_mem
Submodule.subset_span
Finset.sum_congr
Fin.cons_succ
Fin.cons_zero
Fin.sum_univ_succ
zero_add
zero_smul
group_smul πŸ“–mathematicalLinearIndependentPi.smul'β€”linearIndependent_iff''β‚›
IsUnit.smul_left_cancel
Group.isUnit
Finset.sum_congr
smul_assoc
SMulCommClass.smul_comm
group_smul_iff πŸ“–mathematicalβ€”LinearIndependent
Pi.smul'
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”inv_smul_smul
group_smul
linearCombination_ne_of_notMem_support πŸ“–β€”LinearIndependent
Finset
Finset.instMembership
Finsupp.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”RingHomSurjective.ids
Finsupp.span_image_eq_map_linearCombination
notMem_span_image
Finsupp.mem_supported_support
map πŸ“–mathematicalLinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Disjoint
Submodule
Submodule.instPartialOrder
Submodule.instOrderBot
Submodule.span
Set.range
LinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”LinearMap.linearIndependent_iff_of_disjoint
map' πŸ“–mathematicalLinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
LinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
Bot.bot
Submodule
Submodule.instBot
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”map
map_injOn πŸ“–β€”LinearIndependent
Set.InjOn
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
SetLike.coe
Submodule
Submodule.setLike
Submodule.span
Set.range
β€”β€”LinearMap.linearIndependent_iff_of_injOn
map_of_injective_injective πŸ“–β€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom.instFunLike
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”linearIndependent_iff'
AddMonoidHom.instAddMonoidHomClass
Finset.sum_congr
map_of_injective_injectiveβ‚› πŸ“–β€”LinearIndependent
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”linearIndependent_iff'β‚›
AddMonoidHom.instAddMonoidHomClass
Finset.sum_congr
map_of_surjective_injective πŸ“–β€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”map_of_surjective_injectiveβ‚›
injective_iff_map_eq_zero
AddMonoidHom.instAddMonoidHomClass
map_of_surjective_injectiveβ‚› πŸ“–β€”LinearIndependent
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”Function.Surjective.hasRightInverse
map_of_injective_injectiveβ‚›
notMem_span_image πŸ“–mathematicalLinearIndependent
Set
Set.instMembership
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
β€”Set.image_singleton
Submodule.mem_span_singleton_self
ne_zero
Submodule.disjoint_def
disjoint_span_image
restrict_scalars πŸ“–β€”SMulZeroClass.toSMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
SMulWithZero.toSMulZeroClass
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
LinearIndependent
β€”β€”zero_smul
Finsupp.sum_mapRange_index
smul_assoc
one_smul
Finsupp.ext
restrict_scalars' πŸ“–β€”LinearIndependentβ€”β€”restrict_scalars
faithfulSMul_iff_injective_smul_one
sum_type πŸ“–β€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Disjoint
Submodule
Submodule.instPartialOrder
Submodule.instOrderBot
Submodule.span
Set.range
β€”β€”linearIndependent_sum
units_smul πŸ“–mathematicalLinearIndependentPi.smul'
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Units.instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Module.toDistribMulAction
β€”linearIndependent_iff''β‚›
Finset.sum_congr
SemigroupAction.mul_smul
units_smul_iff πŸ“–mathematicalβ€”LinearIndependent
Pi.smul'
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Units.instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Module.toDistribMulAction
β€”inv_smul_smul
units_smul

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
linearIndependent_iff πŸ“–mathematicalker
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
Bot.bot
Submodule
Submodule.instBot
LinearIndependent
DFunLike.coe
LinearMap
instFunLike
β€”linearIndependent_iff_of_disjoint

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
range_ker_disjoint πŸ“–mathematicalLinearIndependent
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Disjoint
Submodule
instPartialOrder
instOrderBot
span
Set.range
LinearMap.ker
β€”disjoint_iff_inf_le
Set.image_univ
RingHomSurjective.ids
Finsupp.span_image_eq_map_linearCombination
map_inf_eq_map_inf_comap
RingHomCompTriple.ids
LinearMap.ker_comp
LinearMap.ker_eq_bot_of_injective
Finsupp.linearCombination_linear_comp
LinearIndependent.eq_1
inf_bot_eq
map_bot
le_refl

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
LinearIndepOn_iff_linearIndepOn_image_injOn πŸ“–mathematicalβ€”LinearIndepOn
Set.image
Set.InjOn
β€”LinearIndepOn.id_image
LinearIndepOn.injOn
linearIndepOn_iff_image
eq_of_linearIndepOn_id_of_span_subtype πŸ“–β€”LinearIndepOn
Set
Set.instHasSubset
SetLike.coe
Submodule
Submodule.setLike
Submodule.span
β€”β€”Subtype.coe_injective
surjective_of_linearIndependent_of_span
Subtype.range_coe_subtype
Set.Subset.antisymm
Subtype.mem
le_of_span_le_span πŸ“–β€”LinearIndepOn
Set
Set.instHasSubset
Submodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.span
β€”β€”eq_of_linearIndepOn_id_of_span_subtype
LinearIndepOn.mono
Set.union_subset
Set.subset_union_right
Set.Subset.trans
Submodule.subset_span
Set.subset_union_left
linearIndepOn_congr πŸ“–mathematicalSet.EqOnLinearIndepOnβ€”LinearIndepOn.eq_1
Set.EqOn.symm
linearIndepOn_id_union_iff πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set.instUnion
Submodule
Submodule.instPartialOrder
Submodule.instOrderBot
Submodule.span
β€”linearIndepOn_union_iff
Set.image_id
linearIndepOn_of_finite πŸ“–β€”LinearIndepOnβ€”β€”linearIndepOn_iffβ‚›
Set.union_subset
Set.Finite.union
Finset.finite_toSet
Set.subset_union_left
Set.subset_union_right
linearIndepOn_singleton_iff πŸ“–mathematicalβ€”LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instSingletonSet
β€”LinearIndepOn.ne_zero
IsDomain.toNontrivial
LinearIndepOn.singleton
linearIndepOn_union_iff πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set.instUnion
Submodule
Submodule.instPartialOrder
Submodule.instOrderBot
Submodule.span
Set.image
β€”LinearIndepOn.mono
Set.subset_union_left
Set.subset_union_right
Set.ext
LinearIndependent.disjoint_span_image
Disjoint.preimage
LinearIndepOn.union
linearIndependent_finset_map_embedding_subtype πŸ“–mathematicalLinearIndependent
Set
Set.instMembership
Finset
SetLike.instMembership
Finset.instSetLike
Finset.map
Function.Embedding.subtype
β€”LinearIndependent.comp
linearIndependent_monoidHom πŸ“–mathematicalβ€”LinearIndependent
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
MonoidHom.instFunLike
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
β€”linearIndependent_iff'
Finset.induction_on
instIsEmptyFalse
sub_eq_zero
Finset.sum_apply
Finset.sum_congr
sub_mul
Finset.sum_sub_distrib
Finset.sum_insert
add_sub_add_left_eq_sub
mul_assoc
mul_left_comm
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
Finset.mul_sum
MulZeroClass.mul_zero
sub_self
MonoidHom.ext
smul_eq_zero
instIsTorsionFree
IsDomain.toIsCancelMulZero
smul_sub
sub_ne_zero_of_ne
mul_one
MonoidHom.map_one
Finset.sum_eq_zero
zero_smul
add_zero
Finset.forall_mem_insert
linearIndependent_span πŸ“–mathematicalLinearIndependentSubmodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
Submodule.subset_span
Set.mem_range_self
Submodule.addCommMonoid
Submodule.module
β€”LinearIndependent.of_comp
Submodule.subset_span
Set.mem_range_self
linearIndependent_subsingleton_index_iff πŸ“–mathematicalβ€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”isEmpty_or_nonempty
unique_iff_subsingleton_and_nonempty
linearIndependent_unique_iff
Unique.eq_default
linearIndependent_sum πŸ“–mathematicalβ€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Disjoint
Submodule
Submodule.instPartialOrder
Submodule.instOrderBot
Submodule.span
Set.range
β€”Set.range_comp
LinearIndependent.comp
Sum.inl_injective
Sum.inr_injective
LinearIndependent.disjoint_span_image
IsCompl.disjoint
Set.isCompl_range_inl_range_inr
linearIndependent_iff'
Function.Injective.injOn
Finset.sum_preimage'
Finset.sum_union
Finset.disjoint_filter
Set.disjoint_left
Finset.filter_or
Finset.sum_congr
Finset.filter.congr_simp
Set.range_inl_union_range_inr
Finset.filter_true
Submodule.disjoint_def'
sum_mem
Submodule.addSubmonoidClass
Submodule.smul_mem
Submodule.subset_span
Set.mem_range_self
NegMemClass.neg_mem
AddSubgroupClass.toNegMemClass
Submodule.addSubgroupClass
eq_neg_iff_add_eq_zero
Finset.mem_preimage
neg_eq_zero
linearIndependent_unique πŸ“–mathematicalβ€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”linearIndependent_unique_iff
linearIndependent_unique_iff πŸ“–mathematicalβ€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”Finsupp.linearCombination_unique
IsDomain.toIsCancelMulZero
Finsupp.single_eq_same
NeZero.one
IsDomain.toNontrivial
LinearIndependent.of_subsingleton
Unique.instSubsingleton
span_le_span_iff πŸ“–mathematicalLinearIndependent
Set
Set.instMembership
Set.instHasSubset
Submodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.span
β€”le_of_span_le_span
Submodule.span_mono
surjective_of_linearIndependent_of_span πŸ“–β€”LinearIndependent
Set
Set.instHasSubset
Set.range
SetLike.coe
Submodule
Submodule.setLike
Submodule.span
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”β€”LinearIndependent.comp
Function.Embedding.injective
Set.mem_range_self
Finsupp.linearCombination_mapDomain
LinearIndependent.linearCombination_repr
Finsupp.linearCombination_single
one_smul
Finsupp.single_of_embDomain_single
zero_ne_one
NeZero.one
Finsupp.embDomain_eq_mapDomain

---

← Back to Index