Documentation Verification Report

Defs

πŸ“ Source: Mathlib/LinearAlgebra/LinearIndependent/Defs.lean

Statistics

MetricCount
DefinitionsLinearIndepOn, linearCombinationEquiv, repr
3
TheoremslinearIndependent_iff, linearIndependent_iffβ‚’β‚›, linearIndependent_iffβ‚›, not_linearIndependent_iff, not_linearIndependent_iffβ‚’β‚›, not_linearIndependent_iffβ‚›, eq_zero_of_smul_mem_span, id_singleton, injOn, linearIndependent, linearIndependent_restrict, mono, ne_zero, notMem_span, notMem_span_of_insert, of_comp, of_subsingleton, singleton, singleton', zero_notMem_image, comp, eq_zero_of_smul_mem_span, finsuppLinearCombination_injective, fintypeLinearCombination_injective, injective, linearCombinationEquiv_apply_coe, linearCombinationEquiv_symm_apply, linearCombination_comp_repr, linearCombination_repr, linearIndepOn, linearIndepOn_id, linearIndepOn_id', maximal_iff, ne_zero, notMem_span, of_comp, of_linearIndepOn_id_range, of_linearIndepOn_range, of_subsingleton, of_subsingleton', repr_eq, repr_eq_single, repr_ker, repr_range, smul_left_injective, span_repr_eq, linearIndepOn_iff_of_injOn, linearIndependent_iff_of_disjoint, linearIndependent_iff_of_injOn, linearDepOn_iff, linearDepOn_iff', linearDepOn_iff'β‚›, linearDepOn_iffβ‚›, linearIndepOn_empty, linearIndepOn_equiv, linearIndepOn_finset_iff, linearIndepOn_finset_iffβ‚’β‚›, linearIndepOn_finset_iffβ‚›, linearIndepOn_id_range_iff, linearIndepOn_iff, linearIndepOn_iff', linearIndepOn_iff'', linearIndepOn_iff_disjoint, linearIndepOn_iff_image, linearIndepOn_iff_linearCombinationOn, linearIndepOn_iff_linearCombinationOnβ‚›, linearIndepOn_iff_linearIndepOn_finset, linearIndepOn_iff_notMem_span, linearIndepOn_iffβ‚›, linearIndepOn_range_iff, linearIndepOn_univ, linearIndepOn_zero_iff, linearIndependent_add_smul_iff, linearIndependent_comp_subtype_iff, linearIndependent_empty, linearIndependent_empty_type, linearIndependent_equiv, linearIndependent_equiv', linearIndependent_iff, linearIndependent_iff', linearIndependent_iff'', linearIndependent_iff''β‚›, linearIndependent_iff'β‚›, linearIndependent_iff_eq_zero_of_smul_mem_span, linearIndependent_iff_finset_linearIndependent, linearIndependent_iff_injective_finsuppLinearCombination, linearIndependent_iff_injective_fintypeLinearCombination, linearIndependent_iff_ker, linearIndependent_iff_notMem_span, linearIndependent_iffβ‚’β‚›, linearIndependent_iffβ‚›, linearIndependent_of_subsingleton, linearIndependent_restrict_iff, linearIndependent_set_coe_iff, linearIndependent_subsingleton_iff, linearIndependent_subtype_iff, linearIndependent_zero_iff, not_linearIndepOn_finset_iff, not_linearIndepOn_finset_iffβ‚’β‚›, not_linearIndepOn_finset_iffβ‚›, not_linearIndependent_iff, not_linearIndependent_iffβ‚’β‚›, not_linearIndependent_iffβ‚›
103
Total106

Fintype

Theorems

NameKindAssumesProvesValidatesDepends On
linearIndependent_iff πŸ“–mathematicalβ€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”linearIndependent_iff'
linearIndependent_iff''
Finset.sum_subset
Finset.subset_univ
zero_smul
linearIndependent_iffβ‚’β‚› πŸ“–mathematicalβ€”LinearIndependent
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”linearIndependent_iffβ‚’β‚›
disjoint_compl_right
Finset.mem_compl
Finset.sum_subset
Disjoint.le_compl_left
zero_smul
Finset.sum_congr
linearIndependent_iffβ‚› πŸ“–mathematicalβ€”LinearIndependentβ€”β€”
not_linearIndependent_iff πŸ“–mathematicalβ€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Finset.sum
Finset.univ
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”not_iff_not
linearIndependent_iff
not_linearIndependent_iffβ‚’β‚› πŸ“–mathematicalβ€”LinearIndependent
Finset.sum
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Compl.compl
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Finset.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Finset.sum_congr
compl_compl
Finset.mem_compl
not_linearIndependent_iffβ‚› πŸ“–mathematicalβ€”LinearIndependent
Finset.sum
Finset.univ
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”not_iff_not
linearIndependent_iffβ‚›

LinearIndepOn

Theorems

NameKindAssumesProvesValidatesDepends On
eq_zero_of_smul_mem_span πŸ“–mathematicalLinearIndepOn
Set
Set.instMembership
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
Set.instSDiff
Set.instSingletonSet
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”LinearIndependent.eq_zero_of_smul_mem_span
Set.image_comp
Set.image_diff
Subtype.val_injective
Set.image_univ
Subtype.range_coe_subtype
Set.image_singleton
id_singleton πŸ“–mathematicalβ€”LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instSingletonSet
β€”singleton
injOn πŸ“–mathematicalLinearIndepOnSet.InjOnβ€”Set.injOn_iff_injective
LinearIndependent.injective
linearIndependent πŸ“–mathematicalLinearIndepOnLinearIndependent
Set.Elem
Set
Set.instMembership
β€”β€”
linearIndependent_restrict πŸ“–mathematicalLinearIndepOnLinearIndependent
Set.Elem
Set.restrict
β€”β€”
mono πŸ“–β€”LinearIndepOn
Set
Set.instHasSubset
β€”β€”LinearIndependent.comp
Set.inclusion_injective
ne_zero πŸ“–β€”LinearIndepOn
Set
Set.instMembership
β€”β€”LinearIndependent.ne_zero
notMem_span πŸ“–mathematicalLinearIndepOn
Set
Set.instMembership
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
Set.instSDiff
Set.instSingletonSet
β€”one_ne_zero
NeZero.one
eq_zero_of_smul_mem_span
one_smul
notMem_span_of_insert πŸ“–mathematicalLinearIndepOn
Set
Set.instInsert
Set.instMembership
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
β€”Set.insert_diff_of_mem
Set.diff_singleton_eq_self
notMem_span
Set.mem_insert
of_comp πŸ“–β€”LinearIndepOn
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
β€”β€”LinearIndependent.of_comp
of_subsingleton πŸ“–mathematicalβ€”LinearIndepOnβ€”linearIndependent_of_subsingleton
singleton πŸ“–mathematicalβ€”LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instSingletonSet
β€”IsDomain.toIsCancelMulZero
singleton' πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instSingletonSet
β€”LinearIndependent.of_subsingleton'
Unique.instSubsingleton
zero_notMem_image πŸ“–mathematicalLinearIndepOnSet
Set.instMembership
Set.image
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”ne_zero

LinearIndependent

Definitions

NameCategoryTheorems
linearCombinationEquiv πŸ“–CompOp
2 mathmath: linearCombinationEquiv_apply_coe, linearCombinationEquiv_symm_apply
repr πŸ“–CompOp
13 mathmath: linearCombination_repr, Module.Basis.mk_repr, setBasisOfLinearIndependentOfCardEqFinrank_repr_apply, repr_eq_single, basisOfLinearIndependentOfCardEqFinrank_repr_apply, linearCombination_comp_repr, finsetBasisOfTopLeSpanOfCardEqFinrank_repr_apply, span_repr_eq, repr_range, setBasisOfTopLeSpanOfCardEqFinrank_repr_apply, repr_eq, repr_ker, finsetBasisOfLinearIndependentOfCardEqFinrank_repr_apply

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”LinearIndependentβ€”β€”Finsupp.linearCombination_mapDomain
Finsupp.mapDomain_injective
eq_zero_of_smul_mem_span πŸ“–mathematicalLinearIndependent
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
Set
Set.instSDiff
Set.univ
Set.instSingletonSet
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”RingHomSurjective.ids
Submodule.mem_map
Finsupp.span_image_eq_map_linearCombination
Set.notMem_of_mem_diff
linearIndependent_iffβ‚›
Finsupp.linearCombination_single
Finsupp.single_eq_same
Set.mem_singleton
finsuppLinearCombination_injective πŸ“–mathematicalLinearIndependentFinsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
LinearMap
RingHom.id
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Finsupp.linearCombination
β€”linearIndependent_iff_injective_finsuppLinearCombination
fintypeLinearCombination_injective πŸ“–mathematicalLinearIndependentDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
Fintype.linearCombination
β€”linearIndependent_iff_injective_fintypeLinearCombination
injective πŸ“–β€”LinearIndependentβ€”β€”Finsupp.linearCombination_single
one_smul
Finsupp.single_left_injective
one_ne_zero
NeZero.one
linearCombinationEquiv_apply_coe πŸ“–mathematicalLinearIndependentSubmodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Submodule.addCommMonoid
Finsupp.module
Semiring.toModule
Submodule.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
linearCombinationEquiv
LinearMap
LinearMap.instFunLike
Finsupp.linearCombination
β€”RingHomInvPair.ids
linearCombinationEquiv_symm_apply πŸ“–mathematicalLinearIndependentDFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Submodule.addCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Submodule.module
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
linearCombinationEquiv
Equiv.invFun
Equiv.trans
LinearMap.range
RingHomSurjective.invPair
LinearMap.codRestrict
Finsupp.linearCombination
LinearEquiv.toEquiv
LinearEquiv.ofInjective
LinearEquiv.ofTop
β€”RingHomInvPair.ids
linearCombination_comp_repr πŸ“–mathematicalLinearIndependentLinearMap.comp
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Submodule.addCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Submodule.module
Finsupp.module
Semiring.toModule
RingHom.id
RingHomCompTriple.ids
Finsupp.linearCombination
repr
Submodule.subtype
β€”LinearMap.ext
RingHomCompTriple.ids
linearCombination_repr
linearCombination_repr πŸ“–mathematicalLinearIndependentDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Finsupp.linearCombination
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
Submodule.addCommMonoid
Submodule.module
repr
β€”RingHomInvPair.ids
LinearEquiv.apply_symm_apply
linearIndepOn πŸ“–mathematicalLinearIndependentLinearIndepOn
Set.univ
β€”linearIndepOn_univ
linearIndepOn_id πŸ“–mathematicalLinearIndependentLinearIndepOn
Set.range
β€”Set.comp_rangeSplitting
comp
Set.rangeSplitting_injective
linearIndepOn_id' πŸ“–mathematicalLinearIndependent
Set.range
LinearIndepOnβ€”linearIndepOn_id
maximal_iff πŸ“–mathematicalLinearIndependentMaximalβ€”Set.range_eq_univ
Set.image_injective
injective
Set.image_univ
Set.range_comp
linearIndepOn_id
Set.range_comp_subset_range
Set.range_subset_iff
Function.Surjective.range_eq
Set.image_congr
Subtype.range_coe_subtype
Set.image_image
ne_zero πŸ“–β€”LinearIndependentβ€”β€”Finsupp.linearCombination_single
one_smul
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
NeZero.one
notMem_span πŸ“–mathematicalLinearIndependentSubmodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”one_ne_zero
NeZero.one
eq_zero_of_smul_mem_span
one_smul
Set.compl_eq_univ_diff
of_comp πŸ“–β€”LinearIndependent
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
β€”β€”Function.Injective.of_comp
RingHomCompTriple.ids
LinearMap.coe_comp
Finsupp.linearCombination_linear_comp
eq_1
of_linearIndepOn_id_range πŸ“–mathematicalLinearIndepOn
Set.range
LinearIndependentβ€”linearIndepOn_id_range_iff
of_linearIndepOn_range πŸ“–mathematicalLinearIndepOn
Set.range
LinearIndependentβ€”linearIndepOn_range_iff
of_subsingleton πŸ“–mathematicalβ€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”of_subsingleton'
IsDomain.toIsCancelMulZero
of_subsingleton' πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”Finsupp.linearCombination_unique
repr_eq πŸ“–mathematicalLinearIndependent
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Finsupp.linearCombination
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
Submodule.addCommMonoid
Submodule.module
repr
β€”RingHomInvPair.ids
LinearEquiv.symm_apply_apply
repr_eq_single πŸ“–mathematicalLinearIndependent
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Submodule.addCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Submodule.module
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
repr
Finsupp.single
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”repr_eq
Finsupp.linearCombination_single
one_smul
repr_ker πŸ“–mathematicalLinearIndependentLinearMap.ker
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Submodule.addCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Submodule.module
Finsupp.module
Semiring.toModule
RingHom.id
repr
Bot.bot
Submodule.instBot
β€”RingHomInvPair.ids
repr.eq_1
LinearEquiv.ker
repr_range πŸ“–mathematicalLinearIndependentLinearMap.range
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Submodule.addCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Submodule.module
Finsupp.module
Semiring.toModule
RingHom.id
RingHomSurjective.ids
repr
Top.top
Submodule.instTop
β€”RingHomSurjective.ids
RingHomInvPair.ids
repr.eq_1
RingHomSurjective.invPair
LinearEquiv.range
smul_left_injective πŸ“–mathematicalLinearIndependentSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”Finsupp.linearCombination_single
Finsupp.single_injective
span_repr_eq πŸ“–mathematicalLinearIndependentSpan.repr
Set.range
Finsupp.equivMapDomain
Set.Elem
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Equiv.ofInjective
injective
DFunLike.coe
LinearMap
RingHom.id
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Finsupp
Submodule.addCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Submodule.module
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
repr
β€”injective
LinearEquiv.injective
RingHomInvPair.ids
Finsupp.linearCombination_equivMapDomain
Equiv.self_comp_ofInjective_symm
Span.finsupp_linearCombination_repr
linearCombination_repr
Finsupp.ext
Equiv.ofInjective_symm_apply

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
linearIndepOn_iff_of_injOn πŸ“–mathematicalSet.InjOn
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
SetLike.coe
Submodule
Submodule.setLike
Submodule.span
Set.image
LinearIndepOnβ€”linearIndependent_iff_of_injOn
Set.image_eq_range
linearIndependent_iff_of_disjoint πŸ“–mathematicalDisjoint
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
Submodule.instOrderBot
Submodule.span
Set.range
ker
RingHom.id
Semiring.toNonAssocSemiring
LinearIndependent
DFunLike.coe
LinearMap
instFunLike
β€”linearIndependent_iff_of_injOn
injOn_of_disjoint_ker
le_rfl
linearIndependent_iff_of_injOn πŸ“–mathematicalSet.InjOn
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
SetLike.coe
Submodule
Submodule.setLike
Submodule.span
Set.range
LinearIndependentβ€”RingHomCompTriple.ids
Finsupp.linearCombination_linear_comp
Set.InjOn.injective_iff
RingHomSurjective.ids
Finsupp.range_linearCombination
coe_range
subset_refl
Set.instReflSubset

(root)

Definitions

NameCategoryTheorems
LinearIndepOn πŸ“–MathDef
71 mathmath: linearIndependent_set_coe_iff, Module.rank_def, RootPairing.linearIndepOn_root_baseOf', linearIndepOn_iff_notMem_span, exists_set_linearIndependent_of_isDomain, linearIndepOn_finset_iff, LinearMap.le_rank_iff_exists_linearIndependent, LinearMap.linearIndepOn_iff_of_injOn, RootPairing.Base.linearIndepOn_coroot, linearIndepOn_id_union_iff, linearIndepOn_univ, linearIndepOn_finset_iffβ‚’β‚›, linearIndepOn_iff, LinearIndepOn.of_subsingleton, linearIndependent_comp_subtype_iff, linearIndepOn_iffβ‚›, linearIndependent_restrict_iff, linearIndepOn_id_insert_iff, linearIndepOn_singleton_iff, linearIndepOn_iff'', Module.le_rank_iff_exists_finset, linearIndepOn_id_range_iff, linearIndepOn_pair_iff, LinearIndependent.linearIndepOn_id, exists_maximal_linearIndepOn', linearDepOn_iff, LinearIndependent.linearIndepOn, linearIndepOn_iff_disjoint, isProperLinearSet_iff, linearIndependent_subtype_iff, linearIndepOn_range_iff, RootPairing.linearIndepOn_root_baseOf, le_rank_iff_exists_linearIndependent, RootPairing.Base.linearIndepOn_root, LinearIndepOn.id_singleton, linearIndepOn_id_pair, exists_finset_linearIndependent_of_le_rank, linearIndepOn_union_iff, linearIndepOn_congr, LinearIndepOn.singleton', linearIndepOn_empty, linearIndepOn_finset_iffβ‚›, Submodule.exists_finset_span_eq_linearIndepOn, RootPairing.linearIndepOn_coroot_iff, linearIndepOn_zero_iff, RootPairing.eq_baseOf_iff, linearIndepOn_equiv, nonempty_linearIndependent_set, exists_maximal_linearIndepOn, linearIndepOn_iff', linearIndepOn_iff_linearIndepOn_finset, LinearIndependent.linearIndepOn_id', not_linearIndepOn_finset_iff, linearIndepOn_iff_image, exists_set_linearIndependent_of_lt_rank, linearDepOn_iffβ‚›, linearIndepOn_union_iff_quotient, not_linearIndepOn_finset_iffβ‚›, linearIndepOn_insert, LinearIndepOn_iff_linearIndepOn_image_injOn, linearIndepOn_id_insert, LinearIndepOn.singleton, HasRankNullity.exists_set_linearIndependent, not_linearIndepOn_finset_iffβ‚’β‚›, linearDepOn_iff', linearIndepOn_isGroupLikeElem, linearIndepOn_insert_iff, LinearIndepOn.pair_iff, linearDepOn_iff'β‚›, linearIndepOn_iff_linearCombinationOnβ‚›, linearIndepOn_iff_linearCombinationOn

Theorems

NameKindAssumesProvesValidatesDepends On
linearDepOn_iff πŸ“–mathematicalβ€”LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Submodule
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.instAddCommMonoid
Finsupp.module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
Finsupp.supported
Finset.sum
Finsupp.support
SMulZeroClass.toSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
DFunLike.coe
Finsupp.instFunLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”linearDepOn_iff'
linearDepOn_iff' πŸ“–mathematicalβ€”LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Submodule
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.instAddCommMonoid
Finsupp.module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
Finsupp.supported
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
LinearMap.instFunLike
Finsupp.linearCombination
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
linearDepOn_iff'β‚› πŸ“–mathematicalβ€”LinearIndepOn
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Submodule
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.instAddCommMonoid
Finsupp.module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
Finsupp.supported
DFunLike.coe
LinearMap
RingHom.id
LinearMap.instFunLike
Finsupp.linearCombination
β€”β€”
linearDepOn_iffβ‚› πŸ“–mathematicalβ€”LinearIndepOn
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Submodule
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.instAddCommMonoid
Finsupp.module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
Finsupp.supported
Finset.sum
Finsupp.support
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
DFunLike.coe
Finsupp.instFunLike
β€”linearDepOn_iff'β‚›
linearIndepOn_empty πŸ“–mathematicalβ€”LinearIndepOn
Set
Set.instEmptyCollection
β€”linearIndependent_empty_type
Set.instIsEmptyElemEmptyCollection
linearIndepOn_equiv πŸ“–mathematicalβ€”LinearIndepOn
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Set.image
β€”linearIndependent_equiv'
linearIndepOn_finset_iff πŸ“–mathematicalβ€”LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.coe
Finset
Finset.instSetLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Finset.sum_attach
Subtype.coe_eta
dite_smul
zero_smul
Finset.sum_congr
linearIndepOn_finset_iffβ‚’β‚› πŸ“–mathematicalβ€”LinearIndepOn
SetLike.coe
Finset
Finset.instSetLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”LinearIndepOn.eq_1
Fintype.linearIndependent_iffβ‚’β‚›
Finset.sum_congr
Finset.sum_filter
Finset.compl_filter
Finset.sum_coe_sort
Finset.sum_ite_mem
Finset.inter_eq_right
Finset.sum_ite
Finset.sum_const_zero
Finset.filter_notMem_eq_sdiff
zero_add
Subtype.coe_eta
Finset.map_subtype_subset
Finset.subtype_map_of_mem
Finset.subtype_eq_univ
Finset.map_sdiff
dite_smul
zero_smul
Finset.sum_map
linearIndepOn_finset_iffβ‚› πŸ“–mathematicalβ€”LinearIndepOn
SetLike.coe
Finset
Finset.instSetLike
β€”Finset.sum_attach
Subtype.coe_eta
dite_smul
zero_smul
Finset.sum_congr
linearIndepOn_id_range_iff πŸ“–mathematicalβ€”LinearIndepOn
Set.range
LinearIndependent
β€”linearIndepOn_range_iff
linearIndepOn_iff πŸ“–mathematicalβ€”LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instZero
β€”linearIndepOn_iffβ‚›
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
sub_eq_zero
sub_mem
Submodule.addSubgroupClass
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
sub_self
linearIndepOn_iff' πŸ“–mathematicalβ€”LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”LinearIndepOn.eq_1
linearIndependent_iff'
Function.Injective.injOn
Subtype.val_injective
Finset.sum_preimage
Subtype.range_coe_subtype
Finset.coe_image
Subtype.coe_preimage_self
Finset.sum_congr
dite_smul
zero_smul
Finset.sum_image
Subtype.coe_eta
linearIndepOn_iff'' πŸ“–mathematicalβ€”LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”linearIndepOn_iff'
Finset.sum_congr
linearIndepOn_iff_disjoint πŸ“–mathematicalβ€”LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Disjoint
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
Finsupp.module
Semiring.toModule
Submodule.instPartialOrder
Submodule.instOrderBot
Finsupp.supported
LinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
Finsupp.linearCombination
β€”linearIndepOn_iff
LinearMap.disjoint_ker
linearIndepOn_iff_image πŸ“–mathematicalSet.InjOnLinearIndepOn
Set.image
β€”linearIndependent_equiv'
linearIndepOn_iff_linearCombinationOn πŸ“–mathematicalβ€”LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
LinearMap.ker
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Submodule
Finsupp.instAddCommMonoid
Finsupp.module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
Finsupp.supported
Submodule.span
Set.image
Submodule.addCommMonoid
Submodule.module
RingHom.id
Finsupp.linearCombinationOn
Bot.bot
Submodule.instBot
β€”linearIndepOn_iff_linearCombinationOnβ‚›
LinearMap.ker_eq_bot
linearIndepOn_iff_linearCombinationOnβ‚› πŸ“–mathematicalβ€”LinearIndepOn
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Submodule
Finsupp.instAddCommMonoid
Finsupp.module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
Finsupp.supported
Submodule.span
Set.image
DFunLike.coe
LinearMap
RingHom.id
Submodule.addCommMonoid
Submodule.module
LinearMap.instFunLike
Finsupp.linearCombinationOn
β€”linearIndependent_restrict_iff
RingHomInvPair.ids
RingHomCompTriple.ids
Finsupp.linearCombination_restrict
linearIndepOn_iff_linearIndepOn_finset πŸ“–mathematicalβ€”LinearIndepOn
SetLike.coe
Finset
Finset.instSetLike
β€”LinearIndepOn.mono
LinearIndepOn.eq_1
linearIndependent_iff_finset_linearIndependent
LinearIndependent.comp
Finset.coe_map
Set.image_congr
Subtype.coe_preimage_self
Finset.mem_map_of_mem
linearIndepOn_iff_notMem_span πŸ“–mathematicalβ€”LinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
Set
Set.instSDiff
Set.instSingletonSet
β€”LinearIndepOn.eq_1
linearIndependent_iff_notMem_span
Set.image_comp
Set.image_diff
Subtype.val_injective
Set.image_univ
Subtype.range_coe_subtype
Set.image_singleton
linearIndepOn_iffβ‚› πŸ“–mathematicalβ€”LinearIndepOnβ€”Finsupp.subtypeDomain_eq_iff
Finsupp.sum_subtypeDomain_index
Finsupp.embDomain_injective
Finsupp.embDomain_eq_mapDomain
Finsupp.sum_mapDomain_index
zero_smul
add_smul
linearIndepOn_range_iff πŸ“–mathematicalβ€”LinearIndepOn
Set.range
LinearIndependent
β€”linearIndependent_equiv'
linearIndepOn_univ πŸ“–mathematicalβ€”LinearIndepOn
Set.univ
LinearIndependent
β€”linearIndependent_equiv'
linearIndepOn_zero_iff πŸ“–mathematicalβ€”LinearIndepOn
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Set
Set.instEmptyCollection
β€”linearIndependent_zero_iff
Set.isEmpty_coe_sort
linearIndependent_add_smul_iff πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
LinearIndependent
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
β€”RingHomInvPair.ids
RingHomCompTriple.ids
Finsupp.linearCombination_comp_addSingleEquiv
linearIndependent_comp_subtype_iff πŸ“–mathematicalβ€”LinearIndependent
Set.Elem
Set
Set.instMembership
LinearIndepOn
β€”β€”
linearIndependent_empty πŸ“–mathematicalβ€”LinearIndependent
Set.Elem
Set
Set.instEmptyCollection
Set.instMembership
β€”linearIndependent_empty_type
Set.instIsEmptyElemEmptyCollection
linearIndependent_empty_type πŸ“–mathematicalβ€”LinearIndependentβ€”Function.injective_of_subsingleton
Unique.instSubsingleton
linearIndependent_equiv πŸ“–mathematicalβ€”LinearIndependent
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”LinearIndependent.comp
Equiv.injective
Equiv.self_comp_symm
linearIndependent_equiv' πŸ“–mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
LinearIndependentβ€”linearIndependent_equiv
linearIndependent_iff πŸ“–mathematicalβ€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instZero
β€”β€”
linearIndependent_iff' πŸ“–mathematicalβ€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”linearIndependent_iff'β‚›
Finset.sum_congr
zero_smul
Finset.sum_const_zero
sub_eq_zero
Finset.sum_sub_distrib
sub_smul
linearIndependent_iff'' πŸ“–mathematicalβ€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”linearIndependent_iff'
Finset.sum_congr
ite_smul
zero_smul
Finset.sum_extend_by_zero
linearIndependent_iff''β‚› πŸ“–mathematicalβ€”LinearIndependentβ€”linearIndependent_iff'β‚›
Finset.sum_congr
ite_smul
zero_smul
Finset.sum_extend_by_zero
linearIndependent_iff'β‚› πŸ“–mathematicalβ€”LinearIndependentβ€”linearIndependent_iffβ‚›
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finset.sum_congr
Finsupp.linearCombination_single
Finsupp.lapply_apply
Finsupp.single_eq_same
Finset.sum_eq_single
Finsupp.single_eq_of_ne'
Finsupp.ext
by_contradiction
Finset.sum_subset
Finset.subset_union_left
Finsupp.notMem_support_iff
zero_smul
Finset.subset_union_right
Mathlib.Tactic.Contrapose.contraposeβ‚‚
linearIndependent_iff_eq_zero_of_smul_mem_span πŸ“–mathematicalβ€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”LinearIndependent.eq_zero_of_smul_mem_span
linearIndependent_iff
Finsupp.ext
Finsupp.mem_span_image_iff_linearCombination
Finsupp.mem_supported'
Set.mem_diff
Set.mem_univ
Set.eq_of_mem_singleton
Finsupp.single_eq_same
sub_self
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finsupp.linearCombination_single
sub_zero
linearIndependent_iff_finset_linearIndependent πŸ“–mathematicalβ€”LinearIndependent
Finset
SetLike.instMembership
Finset.instSetLike
β€”LinearIndependent.comp
Subtype.val_injective
linearIndependent_iff'β‚›
Fintype.linearIndependent_iffβ‚›
Finset.sum_coe_sort
linearIndependent_iff_injective_finsuppLinearCombination πŸ“–mathematicalβ€”LinearIndependent
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
LinearMap
RingHom.id
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
Finsupp.linearCombination
β€”β€”
linearIndependent_iff_injective_fintypeLinearCombination πŸ“–mathematicalβ€”LinearIndependent
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
Fintype.linearCombination
β€”RingHomInvPair.ids
Finite.of_fintype
RingHomCompTriple.ids
linearIndependent_iff_ker πŸ“–mathematicalβ€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
LinearMap.ker
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
RingHom.id
Finsupp.linearCombination
Bot.bot
Submodule
Submodule.instBot
β€”LinearMap.ker_eq_bot
linearIndependent_iff_notMem_span πŸ“–mathematicalβ€”LinearIndependent
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
Set
Set.instSDiff
Set.univ
Set.instSingletonSet
β€”linearIndependent_iff_eq_zero_of_smul_mem_span
one_ne_zero
NeZero.one
DivisionRing.toNontrivial
one_smul
Submodule.smul_mem_iff
IsScalarTower.left
linearIndependent_iffβ‚’β‚› πŸ“–mathematicalβ€”LinearIndependent
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”linearIndependent_iff'β‚›
Disjoint.notMem_of_mem_left_finset
Finset.sum_congr
ite_smul
zero_smul
Finset.sum_ite_mem
Finset.union_inter_cancel_left
Finset.union_inter_cancel_right
Finset.mem_union_left
Disjoint.notMem_of_mem_right_finset
Finset.mem_union_right
LE.le.antisymm'
CanonicallyOrderedAdd.toOrderedSub
LE.le.not_gt
add_right_cancel_iff
IsCancelAdd.toIsRightCancelAdd
add_assoc
Finset.sum_add_distrib
add_left_comm
Finset.sum_filter_add_sum_filter_not
Finset.filter.congr_simp
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
CanonicallyOrderedAdd.toAddLeftMono
LT.lt.not_ge
LT.lt.le
LE.le.antisymm
not_le
linearIndependent_iffβ‚› πŸ“–mathematicalβ€”LinearIndependentβ€”β€”
linearIndependent_of_subsingleton πŸ“–mathematicalβ€”LinearIndependentβ€”linearIndependent_iffβ‚›
Unique.instSubsingleton
linearIndependent_restrict_iff πŸ“–mathematicalβ€”LinearIndependent
Set.Elem
Set.restrict
LinearIndepOn
β€”β€”
linearIndependent_set_coe_iff πŸ“–mathematicalβ€”LinearIndependent
Set.Elem
Set
Set.instMembership
LinearIndepOn
β€”β€”
linearIndependent_subsingleton_iff πŸ“–mathematicalβ€”LinearIndependent
IsEmpty
β€”linearIndependent_zero_iff
linearIndependent_subtype_iff πŸ“–mathematicalβ€”LinearIndependent
Set
Set.instMembership
LinearIndepOn
β€”β€”
linearIndependent_zero_iff πŸ“–mathematicalβ€”LinearIndependent
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
IsEmpty
β€”not_nonempty_iff
LinearIndependent.ne_zero
linearIndependent_empty_type
not_linearIndepOn_finset_iff πŸ“–mathematicalβ€”LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.coe
Finset
Finset.instSetLike
Finset.sum
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Finset.instMembership
β€”Iff.not
linearIndepOn_finset_iff
not_linearIndepOn_finset_iffβ‚’β‚› πŸ“–mathematicalβ€”LinearIndepOn
SetLike.coe
Finset
Finset.instSetLike
Finset.instHasSubset
Finset.sum
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Finset.instSDiff
Finset.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Finset.sdiff_subset
Finset.sum_congr
Finset.sdiff_sdiff_eq_self
Finset.mem_sdiff
not_linearIndepOn_finset_iffβ‚› πŸ“–mathematicalβ€”LinearIndepOn
SetLike.coe
Finset
Finset.instSetLike
Finset.sum
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Finset.instMembership
β€”Iff.not
linearIndepOn_finset_iffβ‚›
not_linearIndependent_iff πŸ“–mathematicalβ€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Finset.sum
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Finset
Finset.instMembership
β€”linearIndependent_iff'
not_linearIndependent_iffβ‚’β‚› πŸ“–mathematicalβ€”LinearIndependent
Disjoint
Finset
Finset.partialOrder
Finset.instOrderBot
Finset.sum
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Finset.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_or_eq
Disjoint.symm
not_linearIndependent_iffβ‚› πŸ“–mathematicalβ€”LinearIndependent
Finset.sum
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Finset
Finset.instMembership
β€”linearIndependent_iff'β‚›

---

← Back to Index