Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/LinearAlgebra/LinearIndependent/Lemmas.lean

Statistics

MetricCount
Definitionsextend, equiv_linearIndependent
2
TheoremslinearIndependent_iff', linearIndependent_iff'β‚›, extend_subset, id_insert, id_insert', image_subset_span_image_extend, insert, insert', linearIndepOn_extend, mem_span_iff, mem_span_iff_id, notMem_span_iff, notMem_span_iff_id, pair_iff, span_extend_eq_span, span_image_extend_eq_span_image, subset_extend, subset_span_extend, eq_of_pair, eq_zero_of_pair, eq_zero_of_pair', fin_cons, iSupIndep_span_singleton, inl_union_inr, isCompl_span_image, of_pairwise_dual_eq_zero_one, option, pair_add_left_iff, pair_add_right_iff, pair_add_smul_add_smul_iff, pair_add_smul_left_iff, pair_add_smul_right_iff, pair_iff, pair_iff', pair_iffβ‚›, pair_neg_left_iff, pair_neg_right_iff, pair_smul_iff, pair_symm_iff, bijective_of_linearIndependent_of_span_eq_top, iSupIndep_map, injective_of_linearIndependent, codisjoint_span_image_of_codisjoint, exists_finite_card_le_of_finite_of_linearIndependent_of_span, exists_linearIndepOn_extension, exists_linearIndepOn_id_extension, exists_linearIndependent, exists_linearIndependent', exists_maximal_linearIndepOn, exists_maximal_linearIndepOn', exists_of_linearIndepOn_of_finite_span, iSupIndep_range_lsingle, linearIndepOn_biUnion_of_directed, linearIndepOn_iUnion_of_directed, linearIndepOn_id_iUnion_finite, linearIndepOn_id_insert, linearIndepOn_id_insert_iff, linearIndepOn_id_pair, linearIndepOn_insert, linearIndepOn_insert_iff, linearIndepOn_pair_iff, linearIndepOn_sUnion_of_directed, linearIndependent_algHom_toLinearMap, linearIndependent_algHom_toLinearMap', linearIndependent_fin2, linearIndependent_fin_cons, linearIndependent_fin_snoc, linearIndependent_fin_succ, linearIndependent_fin_succ', linearIndependent_iUnion_finite, linearIndependent_inl_union_inr', linearIndependent_option, linearIndependent_option', mem_span_insert_exchange
74
Total76

Fintype

Theorems

NameKindAssumesProvesValidatesDepends On
linearIndependent_iff' πŸ“–mathematicalβ€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
LinearMap.ker
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Pi.module
Semiring.toModule
RingHom.id
Semiring.toNonAssocSemiring
DFunLike.coe
LinearEquiv
Nat.instSemiring
RingHomInvPair.ids
LinearMap
LinearMap.addCommMonoid
LinearMap.module
AddCommMonoid.toNatModule
AddMonoid.nat_smulCommClass'
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearMap.lsum
LinearMap.smulRight
NonAssocSemiring.toNonUnitalNonAssocSemiring
IsScalarTower.left
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
LinearMap.id
Bot.bot
Submodule
Submodule.instBot
β€”RingHomInvPair.ids
AddMonoid.nat_smulCommClass'
IsScalarTower.left
RingHomCompTriple.ids
LinearMap.coe_sum
Finset.sum_congr
Finset.sum_apply
linearIndependent_iff'β‚› πŸ“–mathematicalβ€”LinearIndependent
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.module
Semiring.toModule
LinearMap.instFunLike
LinearEquiv
Nat.instSemiring
RingHomInvPair.ids
LinearMap.addCommMonoid
LinearMap.module
AddCommMonoid.toNatModule
AddMonoid.nat_smulCommClass'
AddCommMonoid.toAddMonoid
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearMap.lsum
LinearMap.smulRight
IsScalarTower.left
DistribMulAction.toMulAction
LinearMap.id
β€”RingHomInvPair.ids
AddMonoid.nat_smulCommClass'
IsScalarTower.left
RingHomCompTriple.ids
LinearMap.coe_sum
Finset.sum_congr
Finset.sum_apply

LinearIndepOn

Definitions

NameCategoryTheorems
extend πŸ“–CompOp
20 mathmath: span_image_extend_eq_span_image, Module.Basis.coe_extendLe, Module.Basis.ofSpan_subset, extend_subset, Module.Basis.extendLe_subset, Module.Basis.range_extendLe, Module.Basis.subset_extendLe, subset_span_extend, Module.Basis.range_extend, Module.Basis.extend_apply_self, Module.Basis.range_ofSpan, span_extend_eq_span, image_subset_span_image_extend, subset_extend, linearIndepOn_extend, Module.Basis.ofSpan_apply_self, Module.Basis.extendLe_apply_self, Module.Basis.subset_extend, Module.Basis.coe_extend, Module.Basis.coe_ofSpan

Theorems

NameKindAssumesProvesValidatesDepends On
extend_subset πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
extendβ€”exists_linearIndepOn_extension
id_insert πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set
Set.instInsert
β€”insert
Set.image_id
id_insert' πŸ“–mathematicalLinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Set
Set.instInsert
β€”insert'
Set.image_congr
Set.image_id'
image_subset_span_image_extend πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
Set.image
SetLike.coe
Submodule
Submodule.setLike
Submodule.span
extend
β€”exists_linearIndepOn_extension
insert πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
Set
Set.instInsert
β€”Set.union_singleton
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
union
singleton
DivisionRing.isDomain
DivisionSemiring.to_moduleIsTorsionFree
Set.image_singleton
Submodule.disjoint_span_singleton'
insert' πŸ“–mathematicalLinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Set
Set.instInsert
β€”Set.union_singleton
union
singleton'
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
Set.image_singleton
zero_smul
linearIndepOn_extend πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
extendβ€”exists_linearIndepOn_extension
mem_span_iff πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
Set
Set.instMembership
β€”Submodule.subset_span
Set.mem_image_of_mem
mem_span_iff_id πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set
Set.instMembership
β€”Set.image_congr
Set.image_id'
mem_span_iff
notMem_span_iff πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
Set
Set.instInsert
Set.instMembership
β€”mem_span_iff
notMem_span_iff_id πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set
Set.instInsert
Set.instMembership
β€”mem_span_iff_id
pair_iff πŸ“–mathematicalβ€”LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instInsert
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”linearIndepOn_iff''
Finset.coe_insert
Finset.coe_singleton
Set.instReflSubset
Pi.single_eq_of_ne
add_zero
Finset.sum_congr
Pi.single_apply
Finset.sum_insert
Finset.sum_singleton
zero_add
Finset.sum_pair
Finset.sum_subset
zero_smul
span_extend_eq_span πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
Submodule.span
extend
β€”le_antisymm
Submodule.span_mono
extend_subset
Submodule.span_le
subset_span_extend
span_image_extend_eq_span_image πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
Submodule.span
Set.image
extend
β€”le_antisymm
Submodule.span_mono
Set.image_mono
extend_subset
Submodule.span_le
image_subset_span_image_extend
subset_extend πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
extendβ€”exists_linearIndepOn_extension
subset_span_extend πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
SetLike.coe
Submodule
Submodule.setLike
Submodule.span
extend
β€”Set.image_congr
Set.image_id'
image_subset_span_image_extend

LinearIndependent

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_pair πŸ“–β€”LinearIndependent
Matrix.vecCons
Matrix.vecEmpty
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”pair_iffβ‚›
eq_zero_of_pair πŸ“–mathematicalLinearIndependent
Matrix.vecCons
Matrix.vecEmpty
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
Finsupp.linearCombination_single
Matrix.cons_val_fin_one
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
Finsupp.single_eq_same
Finsupp.single_eq_of_ne
zero_add
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
add_zero
eq_zero_of_pair' πŸ“–mathematicalLinearIndependent
Matrix.vecCons
Matrix.vecEmpty
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”eq_of_pair
zero_smul
add_zero
zero_add
fin_cons πŸ“–mathematicalLinearIndependent
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
Fin.consβ€”linearIndependent_fin_cons
iSupIndep_span_singleton πŸ“–mathematicalLinearIndependentiSupIndep
Submodule
Submodule.completeLattice
Submodule.span
Set
Set.instSingletonSet
β€”RingHomSurjective.ids
Submodule.ext
Finsupp.linearCombination_single
LinearMap.iSupIndep_map
iSupIndep_range_lsingle
inl_union_inr πŸ“–mathematicalLinearIndependent
Set.Elem
Set
Set.instMembership
Set.instUnion
Set.image
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Prod.instAddCommMonoid
Prod.instModule
LinearMap.instFunLike
LinearMap.inl
LinearMap.inr
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
ne_zero
linearIndependent_equiv'
linearIndependent_inl_union_inr'
isCompl_span_image πŸ“–mathematicalLinearIndependent
Submodule.span
Set.range
Top.top
Submodule
Submodule.instTop
IsCompl
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instBoundedOrder
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
Set.image
β€”disjoint_span_image
IsCompl.disjoint
Submodule.codisjoint_span_image_of_codisjoint
IsCompl.codisjoint
of_pairwise_dual_eq_zero_one πŸ“–mathematicalPairwise
DFunLike.coe
Module.Dual
Ring.toSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
LinearIndependentβ€”linearIndependent_iff'
MulZeroClass.mul_zero
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finset.sum_congr
map_smul
SemilinearMapClass.toMulActionSemiHomClass
Finset.sum_eq_single
mul_one
map_zero
AddMonoidHomClass.toZeroHomClass
option πŸ“–mathematicalLinearIndependent
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
Option.casesOn'β€”linearIndependent_option'
pair_add_left_iff πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
Matrix.vecEmpty
Ring.toSemiring
β€”pair_symm_iff
add_comm
pair_add_right_iff
pair_add_right_iff πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
Matrix.vecEmpty
Ring.toSemiring
β€”sub_smul
smul_add
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Abel.zero_termg
sub_zero
neg_add_cancel_left
pair_add_smul_add_smul_iff πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
Matrix.vecEmpty
Ring.toSemiring
β€”eq_or_ne
pair_iff
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_eq
zero_smul
add_zero
smul_zero
NeZero.one
smul_assoc
one_smul
neg_smul
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.neg_eq_eval
Mathlib.Tactic.Module.NF.add_eq_evalβ‚‚
zero_add
Mathlib.Tactic.Module.NF.zero_eq_eval
Mathlib.Tactic.Module.NF.eq_cons_const
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
IsDomain.toIsCancelMulZero
smul_add
smul_smul
mul_comm
Mathlib.Tactic.Module.NF.add_eq_eval₁
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Fintype.complete
Mathlib.Tactic.Module.NF.eq_cons_cons
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Module.NF.eq_const_cons
Matrix.cons_val_fin_one
Mathlib.Tactic.Module.NF.add_eq_eval₃
Mathlib.Tactic.Ring.add_pf_add_gt
mul_neg
neg_mul
neg_neg
pair_smul_iff
sub_ne_zero_of_ne
pair_add_smul_left_iff πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
Matrix.vecEmpty
Ring.toSemiring
β€”subsingleton_or_nontrivial
zero_smul
add_zero
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
one_smul
zero_add
mul_one
MulZeroClass.mul_zero
NeZero.one
pair_add_smul_add_smul_iff
pair_add_smul_right_iff πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
Matrix.vecEmpty
Ring.toSemiring
β€”subsingleton_or_nontrivial
zero_smul
zero_add
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
one_smul
add_zero
mul_one
MulZeroClass.zero_mul
NeZero.one
pair_add_smul_add_smul_iff
pair_iff πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
Matrix.vecEmpty
Ring.toSemiring
AddCommGroup.toAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”linearIndepOn_univ
Finset.coe_univ
Finset.coe_insert
Finset.coe_singleton
LinearIndepOn.pair_iff
Matrix.cons_val_fin_one
pair_iff' πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
Matrix.vecEmpty
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
β€”linearIndepOn_univ
Finset.coe_univ
Finset.coe_insert
Finset.coe_singleton
linearIndepOn_pair_iff
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
Matrix.cons_val_fin_one
pair_iffβ‚› πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
Matrix.vecEmpty
β€”Fin.sum_univ_two
Matrix.cons_val_fin_one
pair_neg_left_iff πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Matrix.vecEmpty
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”pair_iff
smul_neg
neg_smul
neg_neg
pair_neg_right_iff πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Matrix.vecEmpty
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”pair_symm_iff
pair_neg_left_iff
pair_smul_iff πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Matrix.vecEmpty
Ring.toSemiring
β€”SMulCommClass.smul_comm
smul_add
smul_zero
smul_eq_zero_iff_right
IsDomain.toIsCancelMulZero
smul_assoc
pair_symm_iff πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
Matrix.vecEmpty
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”add_comm

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
bijective_of_linearIndependent_of_span_eq_top πŸ“–mathematicalSubmodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set.range
Top.top
Submodule
Submodule.instTop
LinearIndependent
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
Function.Bijectiveβ€”injective_of_linearIndependent
RingHomSurjective.ids
range_eq_top
Submodule.map_top
Submodule.map_span
Set.range_comp
iSupIndep_map πŸ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
iSupIndep
Submodule
Submodule.completeLattice
Submodule.map
RingHomSurjective.ids
β€”RingHomSurjective.ids
iSup_congr_Prop
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
injective_of_linearIndependent πŸ“–β€”Submodule.span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set.range
Top.top
Submodule
Submodule.instTop
LinearIndependent
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
β€”β€”injective_iff_map_eq_zero
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
Submodule.mem_top
Finsupp.mem_span_range_iff_exists_finsupp
linearIndependent_iff
map_finsuppSum
map_smul
SemilinearMapClass.toMulActionSemiHomClass

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
codisjoint_span_image_of_codisjoint πŸ“–mathematicalspan
Set.range
Top.top
Submodule
instTop
Codisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instOrderTop
instPartialOrder
instOrderTop
Set.image
β€”RingHomSurjective.ids
Finsupp.span_image_eq_map_linearCombination
codisjoint_map
LinearMap.range_eq_top
Finsupp.range_linearCombination
Finsupp.codisjoint_supported_supported

(root)

Definitions

NameCategoryTheorems
equiv_linearIndependent πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_finite_card_le_of_finite_of_linearIndependent_of_span πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
SetLike.coe
Submodule
Submodule.setLike
Submodule.span
Finset.card
Set.Finite.toFinset
β€”Set.Finite.coe_toFinset
exists_of_linearIndepOn_of_finite_span
Set.Finite.subset
Finset.finite_toSet
Finset.card_le_card
Finset.coe_subset
exists_linearIndepOn_extension πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
Set.image
SetLike.coe
Submodule
Submodule.setLike
Submodule.span
β€”zorn_subset_nonempty
Set.sUnion_subset
linearIndepOn_sUnion_of_directed
IsChain.directedOn
Set.instReflSubset
Set.subset_sUnion_of_mem
Maximal.prop
by_contra
Submodule.subset_span
Set.mem_image_of_mem
Maximal.mem_of_prop_insert
Set.insert_subset
LinearIndepOn.insert
exists_linearIndepOn_id_extension πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
SetLike.coe
Submodule
Submodule.setLike
Submodule.span
β€”Set.image_congr
Set.image_id'
exists_linearIndepOn_extension
exists_linearIndependent πŸ“–mathematicalβ€”Set
Set.instHasSubset
Submodule.span
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
LinearIndependent
Set.instMembership
β€”exists_linearIndepOn_id_extension
linearIndependent_empty
Set.empty_subset
Submodule.span_eq_of_le
Submodule.span_mono
exists_linearIndependent' πŸ“–mathematicalβ€”Submodule.span
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set.range
LinearIndependent
β€”exists_linearIndependent
Subtype.val_injective
Set.ext
LinearIndependent.comp
exists_maximal_linearIndepOn πŸ“–mathematicalβ€”LinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”exists_maximal_linearIndepOn'
Set.union_singleton
linearDepOn_iff
Mathlib.Tactic.Contrapose.contrapose₃
Finsupp.mem_support_iff
add_eq_zero_iff_eq_neg
Finset.sum_insert
Finset.notMem_erase
Finset.insert_erase
NegMemClass.neg_mem
AddSubgroupClass.toNegMemClass
Submodule.addSubgroupClass
sum_mem
Submodule.addSubmonoidClass
Submodule.smul_mem
Submodule.subset_span
Finset.erase_subset
Finset.ne_of_mem_erase
exists_maximal_linearIndepOn' πŸ“–mathematicalβ€”LinearIndepOnβ€”linearIndepOn_iffβ‚›
Set.eq_empty_or_nonempty
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
Finsupp.supported_empty
DirectedOn.exists_mem_subset_of_finset_subset_biUnion
IsChain.directedOn
Set.Subset.refl
Finset.coe_union
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_union_left
Set.subset_union_right
Set.Subset.trans
exists_maximal_of_chains_bounded
Set.subset_biUnion_of_mem
Set.Subset.antisymm
exists_of_linearIndepOn_of_finite_span πŸ“–mathematicalLinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
SetLike.coe
Submodule
Submodule.setLike
Submodule.span
Finset
Finset.instSetLike
Set.instUnion
Finset.card
β€”Finset.induction_on
eq_of_linearIndepOn_id_of_span_subtype
DivisionRing.toNontrivial
Finset.union_empty
Finset.coe_empty
Set.union_empty
Set.instReflSubset
Finset.mem_insert_self
Set.eq_empty_of_subset_empty
Set.Subset.trans
Finset.coe_insert
le_of_eq
Classical.by_cases
Set.union_insert
Set.insert_subset_insert
Finset.card_insert_of_notMem
Finset.union_insert
Set.not_subset
Submodule.subset_span
Submodule.span_mono
Finset.coe_union
Submodule.span_union
mem_span_insert_exchange
Finset.insert_union
Submodule.span_insert_eq_span
Set.union_subset_union
Set.Subset.refl
Finset.ext
Finset.coe_filter
iSupIndep_range_lsingle πŸ“–mathematicalβ€”iSupIndep
Submodule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddCommMonoid
Finsupp.module
Submodule.completeLattice
LinearMap.range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Finsupp.lsingle
β€”RingHomSurjective.ids
disjoint_iff_inf_le
iSupβ‚‚_le
Finsupp.single_eq_of_ne'
Finsupp.mem_supported
Finsupp.single_eq_same
Finsupp.single_zero
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
linearIndepOn_biUnion_of_directed πŸ“–mathematicalDirectedOn
Order.Preimage
Set
Set.instHasSubset
LinearIndepOn
Set.iUnion
Set.instMembership
β€”Set.biUnion_eq_iUnion
linearIndepOn_iUnion_of_directed
directed_comp
DirectedOn.directed_val
linearIndepOn_iUnion_of_directed πŸ“–mathematicalDirected
Set
Set.instHasSubset
LinearIndepOn
Set.iUnionβ€”linearIndepOn_of_finite
Set.finite_subset_iUnion
Directed.finset_le
Set.instIsTransSubset
LinearIndepOn.mono
Set.Subset.trans
Set.iUnionβ‚‚_subset
Set.Finite.mem_toFinset
linearIndepOn_empty
linearIndepOn_id_iUnion_finite πŸ“–mathematicalLinearIndepOn
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Disjoint
Submodule
Submodule.instPartialOrder
Submodule.instOrderBot
Submodule.span
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Set
Set.instMembership
Set.iUnionβ€”Set.iUnion_eq_iUnion_finset
linearIndepOn_iUnion_of_directed
directed_of_isDirected_le
Finset.isDirected_le
Set.iUnion_mono
Set.iUnion_subset_iUnion_const
Finset.induction_on
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
Finset.set_biUnion_insert
LinearIndepOn.id_union
Submodule.span_iUnionβ‚‚
Finset.finite_toSet
linearIndepOn_id_insert πŸ“–mathematicalSet
Set.instMembership
LinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set.instInsert
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
β€”linearIndepOn_insert
Set.image_congr
Set.image_id'
linearIndepOn_id_insert_iff πŸ“–mathematicalβ€”LinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instInsert
Set.instMembership
β€”Set.image_congr
Set.image_id'
linearIndepOn_insert_iff
linearIndepOn_id_pair πŸ“–mathematicalβ€”LinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instInsert
Set.instSingletonSet
β€”Set.pair_comm
LinearIndepOn.id_insert
LinearIndepOn.singleton
DivisionRing.isDomain
DivisionSemiring.to_moduleIsTorsionFree
linearIndepOn_insert πŸ“–mathematicalSet
Set.instMembership
LinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set.instInsert
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
β€”LinearIndepOn.eq_1
linearIndependent_equiv
linearIndependent_option
Set.range_comp'
Subtype.range_coe_subtype
linearIndepOn_insert_iff πŸ“–mathematicalβ€”LinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instInsert
Set.instMembership
β€”Set.insert_eq_of_mem
linearIndepOn_insert
linearIndepOn_pair_iff πŸ“–mathematicalβ€”LinearIndepOn
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instInsert
Set.instSingletonSet
β€”Set.pair_comm
DivisionSemiring.to_moduleIsTorsionFree
IsDomain.toIsCancelMulZero
DivisionRing.isDomain
Set.image_singleton
linearIndepOn_insert
linearIndepOn_sUnion_of_directed πŸ“–mathematicalDirectedOn
Set
Set.instHasSubset
LinearIndepOn
Set.sUnionβ€”Set.sUnion_eq_iUnion
linearIndepOn_iUnion_of_directed
DirectedOn.directed_val
linearIndependent_algHom_toLinearMap πŸ“–mathematicalβ€”LinearIndependent
AlgHom
CommSemiring.toSemiring
CommRing.toCommSemiring
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
AlgHom.toLinearMap
LinearMap.addCommMonoid
LinearMap.module
Semiring.toModule
Algebra.to_smulCommClass
β€”LinearIndependent.of_comp
Algebra.to_smulCommClass
LinearIndependent.comp
linearIndependent_monoidHom
AlgHom.ext
DFunLike.congr_fun
linearIndependent_algHom_toLinearMap' πŸ“–mathematicalβ€”LinearIndependent
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
AlgHom.toLinearMap
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
β€”LinearIndependent.restrict_scalars'
smulCommClass_self
Algebra.to_smulCommClass
LinearMap.instIsScalarTower
IsScalarTower.right
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
linearIndependent_algHom_toLinearMap
linearIndependent_fin2 πŸ“–mathematicalβ€”LinearIndependent
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
β€”linearIndependent_fin_succ
linearIndependent_unique_iff
DivisionRing.isDomain
DivisionSemiring.to_moduleIsTorsionFree
Set.range_unique
Submodule.mem_span_singleton
linearIndependent_fin_cons πŸ“–mathematicalβ€”LinearIndependent
Fin.cons
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
β€”linearIndependent_equiv
linearIndependent_option
linearIndependent_fin_snoc πŸ“–mathematicalβ€”LinearIndependent
Fin.snoc
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
β€”Fin.snoc_eq_cons_rotate
linearIndependent_equiv
linearIndependent_fin_cons
linearIndependent_fin_succ πŸ“–mathematicalβ€”LinearIndependent
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Fin.tail
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
β€”linearIndependent_fin_cons
Fin.cons_self_tail
linearIndependent_fin_succ' πŸ“–mathematicalβ€”LinearIndependent
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Fin.init
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
β€”linearIndependent_fin_snoc
Fin.snoc_init_self
linearIndependent_iUnion_finite πŸ“–β€”LinearIndependent
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Disjoint
Submodule
Submodule.instPartialOrder
Submodule.instOrderBot
Submodule.span
Set.range
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Set
Set.instMembership
β€”β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
LinearIndependent.of_linearIndepOn_id_range
Sigma.eq
LinearIndependent.injective
Submodule.disjoint_def
Set.finite_singleton
Set.eq_of_mem_singleton
Submodule.subset_span
Set.mem_range_self
iSup_singleton
LinearIndependent.ne_zero
Set.range_sigma_eq_iUnion_range
linearIndepOn_id_iUnion_finite
LinearIndependent.linearIndepOn_id
linearIndependent_inl_union_inr' πŸ“–mathematicalLinearIndependentDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Prod.instAddCommMonoid
Prod.instModule
LinearMap.instFunLike
LinearMap.inl
LinearMap.inr
β€”RingHomCompTriple.ids
RingHomInvPair.ids
Finsupp.lhom_ext'
LinearMap.ext_ring
Finsupp.linearCombination_single
one_smul
Finsupp.comapDomain_single
Finsupp.linearCombination_comapDomain
Finset.sum_congr
Finset.preimage_inr
Finsupp.single_eq_of_ne
zero_smul
Finset.sum_const_zero
Finset.preimage_inl
LinearIndependent.eq_1
linearIndependent_option πŸ“–mathematicalβ€”LinearIndependent
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
β€”Option.casesOn'_none_coe
linearIndependent_option' πŸ“–mathematicalβ€”LinearIndependent
Option.casesOn'
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
β€”linearIndependent_equiv
linearIndependent_sum
Set.range_unique
linearIndependent_unique_iff
DivisionRing.isDomain
DivisionSemiring.to_moduleIsTorsionFree
Submodule.disjoint_span_singleton
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
mem_span_insert_exchange πŸ“–β€”Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.span
Set
Set.instInsert
β€”β€”Submodule.smul_mem
zero_smul
zero_add
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.add_eq_eval₁
Mathlib.Tactic.Module.NF.add_eq_evalβ‚‚
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
mul_one
inv_mul_cancelβ‚€
Mathlib.Tactic.Module.NF.eq_const_cons
add_neg_cancel

---

← Back to Index