Documentation Verification Report

LinearPMap

πŸ“ Source: Mathlib/LinearAlgebra/LinearPMap.lean

Statistics

MetricCount
DefinitionscompPMap, toPMap, bot, codRestrict, comp, coprod, domRestrict, domain, eqLocus, fst, graph, inhabited, instAdd, instAddAction, instAddCommMonoid, instAddMonoid, instAddSemigroup, instAddZeroClass, instCoeFunForallSubtypeMemSubmoduleDomain, instInvolutiveNeg, instMulAction, instNeg, instSMul, instSub, instSubtractionCommMonoid, instVAdd, instZero, inverse, le, mkSpanSingleton, mkSpanSingleton', orderBot, sSup, semilatticeInf, snd, sup, supSpanSingleton, toFun, toFun', toLinearPMap, toLinearPMapAux, valFromGraph, [_]_Β»
43
TheoremscompPMap_apply, toPMap_apply, toPMap_domain, add_apply, add_domain, apply_comp_inclusion, coe_smul, coe_vadd, coprod_apply, dExt, dExt_iff, domRestrict_apply, domRestrict_domain, domRestrict_le, domain_mkSpanSingleton, domain_mono, domain_sSup, domain_sup, domain_supSpanSingleton, eq_of_eq_graph, eq_of_le_of_domain_eq, exists_of_le, ext, ext', ext_iff, fst_apply, graph_fst_eq_zero_snd, graph_map_fst_eq_domain, graph_map_snd_eq_range, image_iff, instIsScalarTower, instSMulCommClass, inverse_apply_eq, inverse_domain, inverse_graph, inverse_range, le_graph_iff, le_graph_of_le, le_of_eqLocus_ge, le_of_le_graph, le_sSup, left_le_sup, map_add, map_neg, map_smul, map_sub, map_zero, mem_domain_iff, mem_domain_iff_of_eq_graph, mem_domain_of_mem_graph, mem_domain_sSup_iff, mem_graph, mem_graph_iff, mem_graph_iff', mem_graph_snd_inj, mem_graph_snd_inj', mem_inverse_graph, mem_inverse_graph_snd_eq_zero, mem_range_iff, mkSpanSingleton'_apply, mkSpanSingleton'_apply_self, mkSpanSingleton_apply, mk_apply, neg_apply, neg_domain, neg_graph, right_le_sup, sSup_apply, sSup_le, smul_apply, smul_domain, smul_graph, snd_apply, sub_apply, sub_domain, supSpanSingleton_apply_mk, supSpanSingleton_apply_mk_of_mem, supSpanSingleton_apply_of_mem, supSpanSingleton_apply_self, supSpanSingleton_apply_smul_self, sup_apply, sup_h_of_disjoint, sup_le, toFun_eq_coe, vadd_apply, vadd_domain, zero_apply, zero_domain, existsUnique_from_graph, mem_graph_toLinearPMap, toLinearPMap_apply_aux, toLinearPMap_domain, toLinearPMap_graph_eq, toLinearPMap_range, valFromGraph_mem
95
Total138

LinearMap

Definitions

NameCategoryTheorems
compPMap πŸ“–CompOp
1 mathmath: compPMap_apply
toPMap πŸ“–CompOp
3 mathmath: toPMap_apply, ContinuousLinearMap.toPMap_adjoint_eq_adjoint_toPMap_of_dense, toPMap_domain

Theorems

NameKindAssumesProvesValidatesDepends On
compPMap_apply πŸ“–mathematicalβ€”LinearPMap.toFun'
compPMap
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instFunLike
β€”β€”
toPMap_apply πŸ“–mathematicalβ€”LinearPMap.toFun'
toPMap
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instFunLike
Submodule
SetLike.instMembership
Submodule.setLike
β€”β€”
toPMap_domain πŸ“–mathematicalβ€”LinearPMap.domain
toPMap
β€”β€”

LinearPMap

Definitions

NameCategoryTheorems
bot πŸ“–CompOpβ€”
codRestrict πŸ“–CompOpβ€”
comp πŸ“–CompOpβ€”
coprod πŸ“–CompOp
1 mathmath: coprod_apply
domRestrict πŸ“–CompOp
5 mathmath: hasCore_def, HasCore.closure_eq, domRestrict_apply, domRestrict_domain, domRestrict_le
domain πŸ“–CompOp
68 mathmath: zero_domain, mem_domain_sSup_iff, HahnEmbedding.Partial.orderTop_eq_archimedeanClassMk, closureHasCore, Submodule.toLinearPMap_range, sub_domain, HahnEmbedding.Partial.archimedeanClassMk_eq_iff, HahnEmbedding.Seed.baseEmbedding_strictMono, Module.Baer.ExtensionOf.is_extension, HahnEmbedding.Partial.toOrderAddMonoidHom_apply, smul_domain, HahnEmbedding.Partial.orderTop_eq_iff, HahnEmbedding.IsPartial.strictMono, HahnEmbedding.IsPartial.truncLT_mem_range, HasCore.le_domain, apply_comp_inclusion, sSup_apply, HahnEmbedding.Partial.truncLT_mem_range_sSupFun, sub_apply, IsSelfAdjoint.dense_domain, coe_smul, map_zero, map_add, domain_sSup, domain_mkSpanSingleton, adjointDomainMkCLM_apply, mem_domain_iff, LinearMap.toPMap_domain, add_apply, mem_graph_iff, map_neg, Submodule.toLinearPMap_domain, map_sub, map_smul, coprod_apply, domain_sup, Module.Baer.extensionOfMax_to_submodule_eq_top, HahnEmbedding.Partial.orderTop_eq_finiteArchimedeanClassMk, mem_graph_iff', HahnEmbedding.Seed.truncLT_mem_range_baseEmbedding, HahnEmbedding.Partial.mem_domain, HahnEmbedding.Seed.mem_domain_baseEmbedding, mem_domain_of_mem_graph, mem_graph, neg_domain, mkSpanSingleton_apply, vadd_apply, ext_iff, Module.Baer.ExtensionOf.le, HahnEmbedding.Partial.archimedeanClassMk_le_of_eval_eq, mem_domain_iff_of_eq_graph, vadd_domain, domRestrict_domain, graph_map_fst_eq_domain, HahnEmbedding.Partial.sSupFun_strictMono, mem_adjoint_domain_iff, coe_vadd, HahnEmbedding.Partial.exists_domain_eq_top, exists_of_le, Module.Baer.ExtensionOfMaxAdjoin.eqn, add_domain, graph_map_snd_eq_range, domain_mono, HahnEmbedding.Seed.domain_baseEmbedding, toFun_eq_coe, mem_range_iff, inverse_domain, HahnEmbedding.Partial.toOrderAddMonoidHom_injective
eqLocus πŸ“–CompOpβ€”
fst πŸ“–CompOp
1 mathmath: fst_apply
graph πŸ“–CompOp
21 mathmath: inverse_graph, neg_graph, mem_inverse_graph, graph_adjoint_toLinearPMap_eq_adjoint, le_graph_iff, mem_domain_iff, mem_graph_iff, mem_graph_iff', closure_def, mem_graph, smul_graph, le_graph_of_le, graph_map_fst_eq_domain, closure_inverse_graph, Submodule.toLinearPMap_graph_eq, graph_map_snd_eq_range, IsClosable.graph_closure_eq_closure_graph, mem_range_iff, adjoint_graph_eq_graph_adjoint, IsClosable.existsUnique, image_iff
inhabited πŸ“–CompOpβ€”
instAdd πŸ“–CompOp
2 mathmath: add_apply, add_domain
instAddAction πŸ“–CompOpβ€”
instAddCommMonoid πŸ“–CompOpβ€”
instAddMonoid πŸ“–CompOpβ€”
instAddSemigroup πŸ“–CompOpβ€”
instAddZeroClass πŸ“–CompOpβ€”
instCoeFunForallSubtypeMemSubmoduleDomain πŸ“–CompOpβ€”
instInvolutiveNeg πŸ“–CompOpβ€”
instMulAction πŸ“–CompOpβ€”
instNeg πŸ“–CompOp
3 mathmath: neg_graph, neg_apply, neg_domain
instSMul πŸ“–CompOp
6 mathmath: instIsScalarTower, smul_domain, coe_smul, smul_graph, smul_apply, instSMulCommClass
instSub πŸ“–CompOp
2 mathmath: sub_domain, sub_apply
instSubtractionCommMonoid πŸ“–CompOpβ€”
instVAdd πŸ“–CompOp
3 mathmath: vadd_apply, vadd_domain, coe_vadd
instZero πŸ“–CompOp
2 mathmath: zero_domain, zero_apply
inverse πŸ“–CompOp
8 mathmath: inverse_graph, mem_inverse_graph, inverse_isClosable_iff, inverse_closure, inverse_range, inverse_closed_iff, closure_inverse_graph, inverse_domain
le πŸ“–CompOp
14 mathmath: HahnEmbedding.IsPartial.baseEmbedding_le, left_le_sup, Module.Baer.chain_linearPMap_of_chain_extensionOf, le_graph_iff, le_of_le_graph, RieszExtension.exists_top, IsFormalAdjoint.le_adjoint, right_le_sup, HahnEmbedding.Partial.baseEmbedding_le_extendFun, isClosable_iff_exists_closed_extension, le_closure, domRestrict_le, HahnEmbedding.Partial.exists_isMax, le_of_eqLocus_ge
mkSpanSingleton πŸ“–CompOp
5 mathmath: supSpanSingleton_apply_mk_of_mem, supSpanSingleton_apply_smul_self, supSpanSingleton_apply_self, mkSpanSingleton_apply, supSpanSingleton_apply_mk
mkSpanSingleton' πŸ“–CompOp
1 mathmath: domain_mkSpanSingleton
orderBot πŸ“–CompOpβ€”
sSup πŸ“–CompOp
5 mathmath: mem_domain_sSup_iff, sSup_apply, sSup_le, domain_sSup, le_sSup
semilatticeInf πŸ“–CompOp
3 mathmath: HahnEmbedding.Partial.lt_extend, RieszExtension.step, domain_mono
snd πŸ“–CompOp
1 mathmath: snd_apply
sup πŸ“–CompOp
5 mathmath: left_le_sup, sup_apply, sup_le, right_le_sup, domain_sup
supSpanSingleton πŸ“–CompOp
5 mathmath: domain_supSpanSingleton, supSpanSingleton_apply_mk_of_mem, supSpanSingleton_apply_smul_self, supSpanSingleton_apply_self, supSpanSingleton_apply_mk
toFun πŸ“–CompOp
10 mathmath: Submodule.toLinearPMap_range, HahnEmbedding.Partial.truncLT_mem_range_extendFun, HahnEmbedding.IsPartial.truncLT_mem_range, HahnEmbedding.Partial.truncLT_mem_range_sSupFun, HahnEmbedding.Seed.truncLT_mem_range_baseEmbedding, mem_adjoint_domain_iff, HahnEmbedding.Partial.truncLT_eval_mem_range_extendFun, graph_map_snd_eq_range, toFun_eq_coe, inverse_domain
toFun' πŸ“–CompOp
73 mathmath: HahnEmbedding.Seed.baseEmbedding_pos, Module.Baer.ExtensionOfMaxAdjoin.extensionToFun_wd, mk_apply, HahnEmbedding.Partial.orderTop_eq_archimedeanClassMk, supSpanSingleton_apply_of_mem, neg_apply, LinearMap.compPMap_apply, mem_inverse_graph, HahnEmbedding.Partial.archimedeanClassMk_eq_iff, HahnEmbedding.Partial.truncLT_mem_range_extendFun, HahnEmbedding.Seed.baseEmbedding_strictMono, Module.Baer.ExtensionOfMaxAdjoin.extendIdealTo_eq, Module.Baer.ExtensionOf.is_extension, Module.Baer.ExtensionOf.dExt_iff, HahnEmbedding.Partial.toOrderAddMonoidHom_apply, HahnEmbedding.Partial.orderTop_eq_iff, HahnEmbedding.Partial.coeff_eq_of_mem, HahnEmbedding.Partial.extendFun_strictMono, LinearMap.toPMap_apply, HahnEmbedding.IsPartial.strictMono, supSpanSingleton_apply_mk_of_mem, HahnEmbedding.IsPartial.truncLT_mem_range, mkSpanSingleton'_apply_self, apply_comp_inclusion, sSup_apply, snd_apply, HahnEmbedding.Partial.truncLT_mem_range_sSupFun, sub_apply, domRestrict_apply, adjoint_apply_of_not_dense, coe_smul, map_zero, map_add, mkSpanSingleton'_apply, adjointDomainMkCLM_apply, HahnEmbedding.Seed.coeff_baseEmbedding, fst_apply, add_apply, mem_graph_iff, map_neg, map_sub, sup_h_of_disjoint, map_smul, dExt_iff, supSpanSingleton_apply_smul_self, coprod_apply, supSpanSingleton_apply_self, HahnEmbedding.Partial.coeff_eq_zero_of_mem, HahnEmbedding.Partial.orderTop_eq_finiteArchimedeanClassMk, mem_graph_iff', HahnEmbedding.Seed.truncLT_mem_range_baseEmbedding, Submodule.toLinearPMap_apply_aux, HahnEmbedding.Partial.eval_lt, mem_graph, adjointDomainMkCLMExtend_apply, mkSpanSingleton_apply, vadd_apply, ext_iff, HahnEmbedding.Partial.eval_eq_truncLT, HahnEmbedding.Partial.evalCoeff_eq, HahnEmbedding.Partial.sSupFun_strictMono, smul_apply, coe_vadd, exists_of_le, supSpanSingleton_apply_mk, HahnEmbedding.Partial.apply_of_mem_stratum, adjointAux_inner, Submodule.mem_graph_toLinearPMap, adjoint_apply_of_dense, zero_apply, toFun_eq_coe, mem_range_iff, image_iff

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”toFun'
LinearPMap
instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
Submodule
Ring.toSemiring
SetLike.instMembership
Submodule.setLike
domain
Submodule.instMin
Set
Set.instMembership
SetLike.coe
Subtype.prop
β€”β€”
add_domain πŸ“–mathematicalβ€”domain
LinearPMap
instAdd
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instMin
β€”β€”
apply_comp_inclusion πŸ“–mathematicalLinearPMap
le
toFun'
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Submodule
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Submodule.addCommMonoid
Submodule.module
LinearMap.instFunLike
Submodule.inclusion
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
β€”β€”
coe_smul πŸ“–mathematicalβ€”toFun'
LinearPMap
instSMul
Function.hasSMul
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
β€”β€”
coe_vadd πŸ“–mathematicalβ€”toFun'
HVAdd.hVAdd
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearPMap
instHVAdd
instVAdd
Pi.instAdd
Submodule
SetLike.instMembership
Submodule.setLike
domain
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
DFunLike.coe
Submodule.addCommMonoid
Submodule.module
LinearMap.instFunLike
LinearMap.comp
RingHomCompTriple.ids
Submodule.subtype
β€”β€”
coprod_apply πŸ“–mathematicalβ€”toFun'
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
coprod
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Submodule
SetLike.instMembership
Submodule.setLike
domain
Set
Set.instMembership
SetLike.coe
β€”β€”
dExt πŸ“–β€”domain
toFun'
β€”β€”ext
dExt_iff πŸ“–mathematicalβ€”toFun'β€”dExt
domRestrict_apply πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.instMin
domain
toFun'
domRestrict
β€”mk_apply
domRestrict_domain πŸ“–mathematicalβ€”domain
domRestrict
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instMin
β€”β€”
domRestrict_le πŸ“–mathematicalβ€”LinearPMap
le
domRestrict
β€”domRestrict_apply
domain_mkSpanSingleton πŸ“–mathematicalSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
domain
mkSpanSingleton'
Submodule.span
Set
Set.instSingletonSet
β€”β€”
domain_mono πŸ“–mathematicalβ€”StrictMono
LinearPMap
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
semilatticeInf
Submodule.instPartialOrder
domain
β€”lt_of_le_of_ne
ne_of_lt
eq_of_le_of_domain_eq
le_of_lt
domain_sSup πŸ“–mathematicalDirectedOn
LinearPMap
le
domain
sSup
SupSet.sSup
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Set.image
β€”β€”
domain_sup πŸ“–mathematicaltoFun'domain
sup
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
β€”β€”
domain_supSpanSingleton πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
supSpanSingleton
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Submodule.span
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Set
Set.instSingletonSet
β€”β€”
eq_of_eq_graph πŸ“–β€”graphβ€”β€”dExt
Submodule.ext
mem_domain_iff_of_eq_graph
le_of_le_graph
Eq.le
eq_of_le_of_domain_eq πŸ“–β€”LinearPMap
le
domain
β€”β€”dExt
exists_of_le πŸ“–mathematicalLinearPMap
le
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
toFun'
β€”β€”
ext πŸ“–β€”domain
toFun'
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
β€”β€”LinearMap.ext
ext' πŸ“–β€”β€”β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”domain
toFun'
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
β€”ext
fst_apply πŸ“–mathematicalβ€”toFun'
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
fst
Submodule
Prod.instAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.prod
β€”β€”
graph_fst_eq_zero_snd πŸ“–β€”Submodule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
SetLike.instMembership
Submodule.setLike
graph
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”Submodule.zero_mem
graph_map_fst_eq_domain πŸ“–mathematicalβ€”Submodule.map
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.fst
graph
domain
β€”Submodule.ext
RingHomSurjective.ids
graph_map_snd_eq_range πŸ“–mathematicalβ€”Submodule.map
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.snd
graph
LinearMap.range
Submodule
SetLike.instMembership
Submodule.setLike
domain
Submodule.addCommMonoid
Submodule.module
toFun
β€”Submodule.ext
RingHomSurjective.ids
image_iff πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
toFun'
Prod.instAddCommMonoid
Prod.instModule
graph
β€”β€”
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
LinearPMap
instSMul
β€”ext'
smul_assoc
LinearMap.instIsScalarTower
instSMulCommClass πŸ“–mathematicalβ€”SMulCommClass
LinearPMap
instSMul
β€”ext'
SMulCommClass.smul_comm
LinearMap.instSMulCommClass
inverse_apply_eq πŸ“–β€”LinearMap.ker
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
toFun
Bot.bot
Submodule.instBot
toFun'
inverse
β€”β€”mem_inverse_graph
inverse_domain πŸ“–mathematicalβ€”domain
inverse
LinearMap.range
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
toFun
β€”RingHomSurjective.ids
inverse.eq_1
Submodule.toLinearPMap_domain
graph_map_snd_eq_range
RingHomCompTriple.ids
RingHomInvPair.ids
LinearEquiv.fst_comp_prodComm
Submodule.map_comp
inverse_graph πŸ“–mathematicalLinearMap.ker
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
toFun
Bot.bot
Submodule.instBot
graph
inverse
Submodule.map
Prod.instAddCommMonoid
Prod.instModule
RingHomSurjective.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
LinearEquiv.prodComm
β€”RingHomSurjective.ids
RingHomInvPair.ids
inverse.eq_1
Submodule.toLinearPMap_graph_eq
mem_inverse_graph_snd_eq_zero
inverse_range πŸ“–mathematicalLinearMap.ker
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
toFun
Bot.bot
Submodule.instBot
LinearMap.range
inverse
RingHomSurjective.ids
β€”RingHomSurjective.ids
inverse.eq_1
RingHomInvPair.ids
Submodule.toLinearPMap_range
mem_inverse_graph_snd_eq_zero
graph_map_fst_eq_domain
RingHomCompTriple.ids
LinearEquiv.snd_comp_prodComm
Submodule.map_comp
le_graph_iff πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
graph
LinearPMap
le
β€”le_of_le_graph
le_graph_of_le
le_graph_of_le πŸ“–mathematicalLinearPMap
le
Submodule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
graph
β€”mem_graph_iff
le_of_eqLocus_ge πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
domain
eqLocus
LinearPMap
le
β€”inf_le_left
le_trans
inf_le_right
le_of_le_graph πŸ“–mathematicalSubmodule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
graph
LinearPMap
le
β€”mem_domain_iff
image_iff
le_sSup πŸ“–mathematicalDirectedOn
LinearPMap
le
Set
Set.instMembership
sSupβ€”β€”
left_le_sup πŸ“–mathematicaltoFun'LinearPMap
le
sup
β€”le_sup_left
add_zero
map_zero
sup_apply
map_add πŸ“–mathematicalβ€”toFun'
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Submodule.add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”LinearMap.map_add
map_neg πŸ“–mathematicalβ€”toFun'
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
NegMemClass.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddSubgroupClass.toNegMemClass
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Submodule.addSubgroupClass
β€”LinearMap.map_neg
map_smul πŸ“–mathematicalβ€”toFun'
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Submodule.smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DistribSMul.toSMulZeroClass
instDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
IsScalarTower.left
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
β€”LinearMap.map_smul
map_sub πŸ“–mathematicalβ€”toFun'
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
AddSubgroupClass.sub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Submodule.addSubgroupClass
SubNegMonoid.toSub
β€”LinearMap.map_sub
map_zero πŸ“–mathematicalβ€”toFun'
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Submodule.zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”LinearMap.map_zero
mem_domain_iff πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Prod.instAddCommMonoid
Prod.instModule
graph
β€”mem_graph
mem_domain_iff_of_eq_graph πŸ“–mathematicalgraphSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
β€”β€”
mem_domain_of_mem_graph πŸ“–mathematicalSubmodule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
SetLike.instMembership
Submodule.setLike
graph
domainβ€”mem_domain_iff
mem_domain_sSup_iff πŸ“–mathematicalSet.Nonempty
LinearPMap
DirectedOn
le
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
sSup
Set
Set.instMembership
β€”domain_sSup
Submodule.mem_sSup_of_directed
Set.Nonempty.image
DirectedOn.mono_comp
StrictMono.monotone
domain_mono
mem_graph πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
SetLike.instMembership
Submodule.setLike
graph
domain
toFun'
β€”β€”
mem_graph_iff πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
SetLike.instMembership
Submodule.setLike
graph
domain
toFun'
β€”β€”
mem_graph_iff' πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
SetLike.instMembership
Submodule.setLike
graph
domain
toFun'
β€”β€”
mem_graph_snd_inj πŸ“–β€”Submodule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
SetLike.instMembership
Submodule.setLike
graph
β€”β€”β€”
mem_graph_snd_inj' πŸ“–β€”Submodule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
SetLike.instMembership
Submodule.setLike
graph
β€”β€”β€”
mem_inverse_graph πŸ“–mathematicalLinearMap.ker
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
toFun
Bot.bot
Submodule.instBot
Prod.instAddCommMonoid
Prod.instModule
graph
inverse
toFun'
β€”RingHomInvPair.ids
RingHomSurjective.ids
inverse_graph
mem_inverse_graph_snd_eq_zero πŸ“–β€”LinearMap.ker
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
toFun
Bot.bot
Submodule.instBot
Prod.instAddCommMonoid
Prod.instModule
Submodule.map
RingHomSurjective.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
LinearEquiv.prodComm
graph
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”RingHomSurjective.ids
RingHomInvPair.ids
Submodule.map_equiv_eq_comap_symm
LinearMap.ker_eq_bot'
mem_range_iff πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
toFun'
Prod.instAddCommMonoid
Prod.instModule
graph
β€”Set.mem_range
mem_graph
mkSpanSingleton'_apply πŸ“–mathematicalSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
domain
mkSpanSingleton'
toFun'β€”sub_eq_zero
sub_smul
Submodule.mem_span_singleton
mkSpanSingleton'_apply_self πŸ“–mathematicalSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
domain
mkSpanSingleton'
toFun'β€”one_smul
mkSpanSingleton'_apply
mkSpanSingleton_apply πŸ“–mathematicalβ€”toFun'
DivisionRing.toRing
mkSpanSingleton
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Submodule.mem_span_singleton_self
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
β€”mkSpanSingleton'_apply_self
Submodule.mem_span_singleton_self
mk_apply πŸ“–mathematicalβ€”toFun'
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Submodule
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
LinearMap.instFunLike
β€”β€”
neg_apply πŸ“–mathematicalβ€”toFun'
LinearPMap
instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
neg_domain πŸ“–mathematicalβ€”domain
LinearPMap
instNeg
β€”β€”
neg_graph πŸ“–mathematicalβ€”graph
LinearPMap
instNeg
Submodule.map
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.prodMap
LinearMap.id
LinearMap
LinearMap.instNeg
β€”Submodule.ext
RingHomSurjective.ids
mem_graph_iff
Submodule.mem_map
neg_apply
right_le_sup πŸ“–mathematicaltoFun'LinearPMap
le
sup
β€”le_sup_right
zero_add
map_zero
sup_apply
sSup_apply πŸ“–mathematicalDirectedOn
LinearPMap
le
Set
Set.instMembership
toFun'
sSup
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
le_sSup
β€”le_sSup
sSup_le πŸ“–mathematicalDirectedOn
LinearPMap
le
sSupβ€”le_of_eqLocus_ge
sSup_le
le_inf
le_sSup
smul_apply πŸ“–mathematicalβ€”toFun'
LinearPMap
instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
β€”β€”
smul_domain πŸ“–mathematicalβ€”domain
LinearPMap
instSMul
β€”β€”
smul_graph πŸ“–mathematicalβ€”graph
LinearPMap
instSMul
Submodule.map
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.prodMap
LinearMap.id
LinearMap
LinearMap.instSMul
DistribMulAction.toDistribSMul
AddCommMonoid.toAddMonoid
β€”Submodule.ext
RingHomSurjective.ids
mem_graph_iff
Submodule.mem_map
smul_apply
snd_apply πŸ“–mathematicalβ€”toFun'
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
snd
Submodule
Prod.instAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.prod
β€”β€”
sub_apply πŸ“–mathematicalβ€”toFun'
LinearPMap
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Submodule.instMin
Set
Set.instMembership
SetLike.coe
Subtype.prop
β€”β€”
sub_domain πŸ“–mathematicalβ€”domain
LinearPMap
instSub
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instMin
β€”β€”
supSpanSingleton_apply_mk πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
toFun'
supSpanSingleton
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
mkSpanSingleton
Submodule.mem_sup
AddCommMonoid.toAddMonoid
Submodule.span
Set
Set.instSingletonSet
Submodule.mem_span_singleton
β€”Submodule.mem_sup
Submodule.mem_span_singleton
sup_apply
mkSpanSingleton'_apply
supSpanSingleton_apply_mk_of_mem πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
toFun'
supSpanSingleton
Submodule.mem_sup_left
mkSpanSingleton
β€”supSpanSingleton_apply_of_mem
Submodule.mem_sup_left
supSpanSingleton_apply_of_mem πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
supSpanSingleton
toFun'β€”Submodule.mem_sup
Submodule.mem_span_singleton
zero_smul
add_zero
Subtype.coe_eta
supSpanSingleton_apply_self πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
toFun'
supSpanSingleton
Submodule.mem_sup_right
mkSpanSingleton
Submodule.mem_span_singleton_self
β€”Submodule.mem_sup_right
Submodule.mem_span_singleton_self
Submodule.mem_span_singleton
one_smul
supSpanSingleton_apply_smul_self
supSpanSingleton_apply_smul_self πŸ“–mathematicalSubmodule
Ring.toSemiring
DivisionRing.toRing
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
toFun'
supSpanSingleton
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
Submodule.mem_sup_right
mkSpanSingleton
Submodule.span
Set
Set.instSingletonSet
AddCommMonoid.toAddMonoid
Submodule.mem_span_singleton
β€”Submodule.mem_sup_right
Submodule.mem_span_singleton
Submodule.mem_sup
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
zero_add
Submodule.mk_eq_zero
map_zero
sup_apply πŸ“–mathematicaltoFun'
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
Submodule
Ring.toSemiring
SetLike.instMembership
Submodule.setLike
domain
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
supβ€”β€”
sup_h_of_disjoint πŸ“–mathematicalDisjoint
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
Submodule.instOrderBot
domain
SetLike.instMembership
Submodule.setLike
toFun'β€”Submodule.disjoint_def
map_zero
sup_le πŸ“–mathematicaltoFun'
LinearPMap
le
supβ€”le_inf
left_le_sup
right_le_sup
le_of_eqLocus_ge
sup_le
toFun_eq_coe πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Submodule
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
domain
Submodule.addCommMonoid
Submodule.module
LinearMap.instFunLike
toFun
toFun'
β€”β€”
vadd_apply πŸ“–mathematicalβ€”toFun'
HVAdd.hVAdd
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearPMap
instHVAdd
instVAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
DFunLike.coe
LinearMap.instFunLike
Submodule
SetLike.instMembership
Submodule.setLike
domain
β€”β€”
vadd_domain πŸ“–mathematicalβ€”domain
HVAdd.hVAdd
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearPMap
instHVAdd
instVAdd
β€”β€”
zero_apply πŸ“–mathematicalβ€”toFun'
LinearPMap
instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
zero_domain πŸ“–mathematicalβ€”domain
LinearPMap
instZero
Top.top
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instTop
β€”β€”

Submodule

Definitions

NameCategoryTheorems
toLinearPMap πŸ“–CompOp
6 mathmath: toLinearPMap_range, LinearPMap.graph_adjoint_toLinearPMap_eq_adjoint, toLinearPMap_domain, toLinearPMap_apply_aux, toLinearPMap_graph_eq, mem_graph_toLinearPMap
toLinearPMapAux πŸ“–CompOpβ€”
valFromGraph πŸ“–CompOp
2 mathmath: toLinearPMap_apply_aux, valFromGraph_mem

Theorems

NameKindAssumesProvesValidatesDepends On
existsUnique_from_graph πŸ“–mathematicalNegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
map
Prod.instAddCommMonoid
Prod.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.fst
ExistsUniqueβ€”RingHomSurjective.ids
existsUnique_of_exists_of_unique
sub_self
sub_mem
sub_eq_zero
mem_graph_toLinearPMap πŸ“–mathematicalNegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Submodule
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
SetLike.instMembership
setLike
map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.fst
LinearPMap.toFun'
toLinearPMap
β€”RingHomSurjective.ids
toLinearPMap_apply_aux
valFromGraph_mem
toLinearPMap_apply_aux πŸ“–mathematicalNegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LinearPMap.toFun'
toLinearPMap
valFromGraph
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
map
Prod.instAddCommMonoid
Prod.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.fst
β€”RingHomSurjective.ids
toLinearPMap_domain πŸ“–mathematicalβ€”LinearPMap.domain
toLinearPMap
map
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.fst
β€”β€”
toLinearPMap_graph_eq πŸ“–mathematicalNegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LinearPMap.graph
toLinearPMap
β€”ext
LinearPMap.mem_graph_iff
RingHomSurjective.ids
mem_graph_toLinearPMap
toLinearPMap_apply_aux
ExistsUnique.unique
existsUnique_from_graph
valFromGraph_mem
toLinearPMap_range πŸ“–mathematicalNegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LinearMap.range
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
LinearPMap.domain
toLinearPMap
addCommMonoid
module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearPMap.toFun
map
Prod.instAddCommMonoid
Prod.instModule
LinearMap.snd
β€”RingHomSurjective.ids
LinearPMap.graph_map_snd_eq_range
toLinearPMap_graph_eq
valFromGraph_mem πŸ“–mathematicalNegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
map
Prod.instAddCommMonoid
Prod.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.fst
valFromGraphβ€”RingHomSurjective.ids
ExistsUnique.exists
existsUnique_from_graph

(root)

Definitions

NameCategoryTheorems
Β«term_β†’β‚—.[_]_Β» πŸ“–CompOpβ€”

---

← Back to Index