| Metric | Count |
DefinitionscompPMap, toPMap, bot, codRestrict, comp, coprod, domRestrict, domain, eqLocus, fst, graph, inhabited, instAdd, instAddAction, instAddCommMonoid, instAddMonoid, instAddSemigroup, instAddZeroClass, instCoeFunForallSubtypeMemSubmoduleDomain, instInvolutiveNeg, instMulAction, instNeg, instSMul, instSub, instSubtractionCommMonoid, instVAdd, instZero, inverse, le, mkSpanSingleton, mkSpanSingleton', orderBot, sSup, semilatticeInf, snd, sup, supSpanSingleton, toFun, toFun', toLinearPMap, toLinearPMapAux, valFromGraph, [_]_Β» | 43 |
TheoremscompPMap_apply, toPMap_apply, toPMap_domain, add_apply, add_domain, apply_comp_inclusion, coe_smul, coe_vadd, coprod_apply, dExt, dExt_iff, domRestrict_apply, domRestrict_domain, domRestrict_le, domain_mkSpanSingleton, domain_mono, domain_sSup, domain_sup, domain_supSpanSingleton, eq_of_eq_graph, eq_of_le_of_domain_eq, exists_of_le, ext, ext', ext_iff, fst_apply, graph_fst_eq_zero_snd, graph_map_fst_eq_domain, graph_map_snd_eq_range, image_iff, instIsScalarTower, instSMulCommClass, inverse_apply_eq, inverse_domain, inverse_graph, inverse_range, le_graph_iff, le_graph_of_le, le_of_eqLocus_ge, le_of_le_graph, le_sSup, left_le_sup, map_add, map_neg, map_smul, map_sub, map_zero, mem_domain_iff, mem_domain_iff_of_eq_graph, mem_domain_of_mem_graph, mem_domain_sSup_iff, mem_graph, mem_graph_iff, mem_graph_iff', mem_graph_snd_inj, mem_graph_snd_inj', mem_inverse_graph, mem_inverse_graph_snd_eq_zero, mem_range_iff, mkSpanSingleton'_apply, mkSpanSingleton'_apply_self, mkSpanSingleton_apply, mk_apply, neg_apply, neg_domain, neg_graph, right_le_sup, sSup_apply, sSup_le, smul_apply, smul_domain, smul_graph, snd_apply, sub_apply, sub_domain, supSpanSingleton_apply_mk, supSpanSingleton_apply_mk_of_mem, supSpanSingleton_apply_of_mem, supSpanSingleton_apply_self, supSpanSingleton_apply_smul_self, sup_apply, sup_h_of_disjoint, sup_le, toFun_eq_coe, vadd_apply, vadd_domain, zero_apply, zero_domain, existsUnique_from_graph, mem_graph_toLinearPMap, toLinearPMap_apply_aux, toLinearPMap_domain, toLinearPMap_graph_eq, toLinearPMap_range, valFromGraph_mem | 95 |
| Total | 138 |
| Name | Category | Theorems |
bot π | CompOp | β |
codRestrict π | CompOp | β |
comp π | CompOp | β |
coprod π | CompOp | 1 mathmath: coprod_apply
|
domRestrict π | CompOp | 5 mathmath: hasCore_def, HasCore.closure_eq, domRestrict_apply, domRestrict_domain, domRestrict_le
|
domain π | CompOp | 68 mathmath: zero_domain, mem_domain_sSup_iff, HahnEmbedding.Partial.orderTop_eq_archimedeanClassMk, closureHasCore, Submodule.toLinearPMap_range, sub_domain, HahnEmbedding.Partial.archimedeanClassMk_eq_iff, HahnEmbedding.Seed.baseEmbedding_strictMono, Module.Baer.ExtensionOf.is_extension, HahnEmbedding.Partial.toOrderAddMonoidHom_apply, smul_domain, HahnEmbedding.Partial.orderTop_eq_iff, HahnEmbedding.IsPartial.strictMono, HahnEmbedding.IsPartial.truncLT_mem_range, HasCore.le_domain, apply_comp_inclusion, sSup_apply, HahnEmbedding.Partial.truncLT_mem_range_sSupFun, sub_apply, IsSelfAdjoint.dense_domain, coe_smul, map_zero, map_add, domain_sSup, domain_mkSpanSingleton, adjointDomainMkCLM_apply, mem_domain_iff, LinearMap.toPMap_domain, add_apply, mem_graph_iff, map_neg, Submodule.toLinearPMap_domain, map_sub, map_smul, coprod_apply, domain_sup, Module.Baer.extensionOfMax_to_submodule_eq_top, HahnEmbedding.Partial.orderTop_eq_finiteArchimedeanClassMk, mem_graph_iff', HahnEmbedding.Seed.truncLT_mem_range_baseEmbedding, HahnEmbedding.Partial.mem_domain, HahnEmbedding.Seed.mem_domain_baseEmbedding, mem_domain_of_mem_graph, mem_graph, neg_domain, mkSpanSingleton_apply, vadd_apply, ext_iff, Module.Baer.ExtensionOf.le, HahnEmbedding.Partial.archimedeanClassMk_le_of_eval_eq, mem_domain_iff_of_eq_graph, vadd_domain, domRestrict_domain, graph_map_fst_eq_domain, HahnEmbedding.Partial.sSupFun_strictMono, mem_adjoint_domain_iff, coe_vadd, HahnEmbedding.Partial.exists_domain_eq_top, exists_of_le, Module.Baer.ExtensionOfMaxAdjoin.eqn, add_domain, graph_map_snd_eq_range, domain_mono, HahnEmbedding.Seed.domain_baseEmbedding, toFun_eq_coe, mem_range_iff, inverse_domain, HahnEmbedding.Partial.toOrderAddMonoidHom_injective
|
eqLocus π | CompOp | β |
fst π | CompOp | 1 mathmath: fst_apply
|
graph π | CompOp | 21 mathmath: inverse_graph, neg_graph, mem_inverse_graph, graph_adjoint_toLinearPMap_eq_adjoint, le_graph_iff, mem_domain_iff, mem_graph_iff, mem_graph_iff', closure_def, mem_graph, smul_graph, le_graph_of_le, graph_map_fst_eq_domain, closure_inverse_graph, Submodule.toLinearPMap_graph_eq, graph_map_snd_eq_range, IsClosable.graph_closure_eq_closure_graph, mem_range_iff, adjoint_graph_eq_graph_adjoint, IsClosable.existsUnique, image_iff
|
inhabited π | CompOp | β |
instAdd π | CompOp | 2 mathmath: add_apply, add_domain
|
instAddAction π | CompOp | β |
instAddCommMonoid π | CompOp | β |
instAddMonoid π | CompOp | β |
instAddSemigroup π | CompOp | β |
instAddZeroClass π | CompOp | β |
instCoeFunForallSubtypeMemSubmoduleDomain π | CompOp | β |
instInvolutiveNeg π | CompOp | β |
instMulAction π | CompOp | β |
instNeg π | CompOp | 3 mathmath: neg_graph, neg_apply, neg_domain
|
instSMul π | CompOp | 6 mathmath: instIsScalarTower, smul_domain, coe_smul, smul_graph, smul_apply, instSMulCommClass
|
instSub π | CompOp | 2 mathmath: sub_domain, sub_apply
|
instSubtractionCommMonoid π | CompOp | β |
instVAdd π | CompOp | 3 mathmath: vadd_apply, vadd_domain, coe_vadd
|
instZero π | CompOp | 2 mathmath: zero_domain, zero_apply
|
inverse π | CompOp | 8 mathmath: inverse_graph, mem_inverse_graph, inverse_isClosable_iff, inverse_closure, inverse_range, inverse_closed_iff, closure_inverse_graph, inverse_domain
|
le π | CompOp | 14 mathmath: HahnEmbedding.IsPartial.baseEmbedding_le, left_le_sup, Module.Baer.chain_linearPMap_of_chain_extensionOf, le_graph_iff, le_of_le_graph, RieszExtension.exists_top, IsFormalAdjoint.le_adjoint, right_le_sup, HahnEmbedding.Partial.baseEmbedding_le_extendFun, isClosable_iff_exists_closed_extension, le_closure, domRestrict_le, HahnEmbedding.Partial.exists_isMax, le_of_eqLocus_ge
|
mkSpanSingleton π | CompOp | 5 mathmath: supSpanSingleton_apply_mk_of_mem, supSpanSingleton_apply_smul_self, supSpanSingleton_apply_self, mkSpanSingleton_apply, supSpanSingleton_apply_mk
|
mkSpanSingleton' π | CompOp | 1 mathmath: domain_mkSpanSingleton
|
orderBot π | CompOp | β |
sSup π | CompOp | 5 mathmath: mem_domain_sSup_iff, sSup_apply, sSup_le, domain_sSup, le_sSup
|
semilatticeInf π | CompOp | 3 mathmath: HahnEmbedding.Partial.lt_extend, RieszExtension.step, domain_mono
|
snd π | CompOp | 1 mathmath: snd_apply
|
sup π | CompOp | 5 mathmath: left_le_sup, sup_apply, sup_le, right_le_sup, domain_sup
|
supSpanSingleton π | CompOp | 5 mathmath: domain_supSpanSingleton, supSpanSingleton_apply_mk_of_mem, supSpanSingleton_apply_smul_self, supSpanSingleton_apply_self, supSpanSingleton_apply_mk
|
toFun π | CompOp | 10 mathmath: Submodule.toLinearPMap_range, HahnEmbedding.Partial.truncLT_mem_range_extendFun, HahnEmbedding.IsPartial.truncLT_mem_range, HahnEmbedding.Partial.truncLT_mem_range_sSupFun, HahnEmbedding.Seed.truncLT_mem_range_baseEmbedding, mem_adjoint_domain_iff, HahnEmbedding.Partial.truncLT_eval_mem_range_extendFun, graph_map_snd_eq_range, toFun_eq_coe, inverse_domain
|
toFun' π | CompOp | 73 mathmath: HahnEmbedding.Seed.baseEmbedding_pos, Module.Baer.ExtensionOfMaxAdjoin.extensionToFun_wd, mk_apply, HahnEmbedding.Partial.orderTop_eq_archimedeanClassMk, supSpanSingleton_apply_of_mem, neg_apply, LinearMap.compPMap_apply, mem_inverse_graph, HahnEmbedding.Partial.archimedeanClassMk_eq_iff, HahnEmbedding.Partial.truncLT_mem_range_extendFun, HahnEmbedding.Seed.baseEmbedding_strictMono, Module.Baer.ExtensionOfMaxAdjoin.extendIdealTo_eq, Module.Baer.ExtensionOf.is_extension, Module.Baer.ExtensionOf.dExt_iff, HahnEmbedding.Partial.toOrderAddMonoidHom_apply, HahnEmbedding.Partial.orderTop_eq_iff, HahnEmbedding.Partial.coeff_eq_of_mem, HahnEmbedding.Partial.extendFun_strictMono, LinearMap.toPMap_apply, HahnEmbedding.IsPartial.strictMono, supSpanSingleton_apply_mk_of_mem, HahnEmbedding.IsPartial.truncLT_mem_range, mkSpanSingleton'_apply_self, apply_comp_inclusion, sSup_apply, snd_apply, HahnEmbedding.Partial.truncLT_mem_range_sSupFun, sub_apply, domRestrict_apply, adjoint_apply_of_not_dense, coe_smul, map_zero, map_add, mkSpanSingleton'_apply, adjointDomainMkCLM_apply, HahnEmbedding.Seed.coeff_baseEmbedding, fst_apply, add_apply, mem_graph_iff, map_neg, map_sub, sup_h_of_disjoint, map_smul, dExt_iff, supSpanSingleton_apply_smul_self, coprod_apply, supSpanSingleton_apply_self, HahnEmbedding.Partial.coeff_eq_zero_of_mem, HahnEmbedding.Partial.orderTop_eq_finiteArchimedeanClassMk, mem_graph_iff', HahnEmbedding.Seed.truncLT_mem_range_baseEmbedding, Submodule.toLinearPMap_apply_aux, HahnEmbedding.Partial.eval_lt, mem_graph, adjointDomainMkCLMExtend_apply, mkSpanSingleton_apply, vadd_apply, ext_iff, HahnEmbedding.Partial.eval_eq_truncLT, HahnEmbedding.Partial.evalCoeff_eq, HahnEmbedding.Partial.sSupFun_strictMono, smul_apply, coe_vadd, exists_of_le, supSpanSingleton_apply_mk, HahnEmbedding.Partial.apply_of_mem_stratum, adjointAux_inner, Submodule.mem_graph_toLinearPMap, adjoint_apply_of_dense, zero_apply, toFun_eq_coe, mem_range_iff, image_iff
|