Documentation Verification Report

Adjugate

πŸ“ Source: Mathlib/LinearAlgebra/Matrix/Adjugate.lean

Statistics

MetricCount
Definitionsadjugate, cramer, cramerMap
3
Theoremsmap_adjugate, adjugate, adjugate_adjugate, adjugate_adjugate', adjugate_apply, adjugate_conjTranspose, adjugate_def, adjugate_diagonal, adjugate_eq_one_of_card_eq_one, adjugate_fin_one, adjugate_fin_succ_eq_det_submatrix, adjugate_fin_three, adjugate_fin_three_of, adjugate_fin_two, adjugate_fin_two_of, adjugate_fin_zero, adjugate_mul, adjugate_mul_distrib, adjugate_mul_distrib_aux, adjugate_one, adjugate_pow, adjugate_reindex, adjugate_smul, adjugate_submatrix_equiv_self, adjugate_subsingleton, adjugate_transpose, adjugate_zero, cramerMap_is_linear, cramer_apply, cramer_eq_adjugate_mulVec, cramer_is_linear, cramer_one, cramer_reindex, cramer_row_self, cramer_smul, cramer_submatrix_equiv, cramer_subsingleton_apply, cramer_transpose_apply, cramer_transpose_row_self, cramer_zero, det_adjugate, det_eq_sum_mul_adjugate_col, det_eq_sum_mul_adjugate_row, det_smul_adjugate_adjugate, isRegular_of_isLeftRegular_det, mulVec_cramer, mul_adjugate, mul_adjugate_apply, sum_cramer, sum_cramer_apply, map_adjugate
51
Total54

AlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
map_adjugate πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Matrix
Matrix.semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Matrix.instAlgebra
funLike
mapMatrix
Matrix.adjugate
β€”RingHom.map_adjugate

Matrix

Definitions

NameCategoryTheorems
adjugate πŸ“–CompOp
42 mathmath: adjugate_fin_two, adjugate_fin_succ_eq_det_submatrix, det_eq_sum_mul_adjugate_row, Continuous.matrix_adjugate, adjugate_fin_one, adjugate_fin_three, det_eq_sum_mul_adjugate_col, adjugate_mul_distrib_aux, adjugate_adjugate, AlgHom.map_adjugate, inv_def, adjugate_conjTranspose, adjugate_fin_three_of, adjugate_eq_one_of_card_eq_one, adjugate_reindex, adjugate_apply, inv_adjugate, mul_adjugate_apply, adjugate_diagonal, adjugate_smul, nonsing_inv_apply, adjugate_mul_distrib, adjugate_adjugate', SpecialLinearGroup.coe_inv, det_adjugate, adjugate_def, RingHom.map_adjugate, det_smul_adjugate_adjugate, adjugate_zero, adjugate_submatrix_equiv_self, adjugate_subsingleton, adjugate_one, IsSymm.adjugate, adjugate_transpose, IsHermitian.adjugate, adjugate_fin_zero, invOf_eq, adjugate_pow, adjugate_mul, adjugate_fin_two_of, cramer_eq_adjugate_mulVec, mul_adjugate
cramer πŸ“–CompOp
20 mathmath: det_smul_inv_mulVec_eq_cramer, cramer_transpose_row_self, cramer_row_self, sum_cramer, cramer_apply, cramer_zero, cramer_reindex, AffineBasis.det_smul_coords_eq_cramer_coords, mul_adjugate_apply, sum_cramer_apply, adjugate_def, cramer_submatrix_equiv, cramer_subsingleton_apply, Continuous.matrix_cramer, mulVec_cramer, cramer_one, cramer_smul, cramer_transpose_apply, cramer_eq_adjugate_mulVec, det_smul_inv_vecMul_eq_cramer_transpose
cramerMap πŸ“–CompOp
2 mathmath: cramer_is_linear, cramerMap_is_linear

Theorems

NameKindAssumesProvesValidatesDepends On
adjugate_adjugate πŸ“–mathematicalβ€”adjugate
Matrix
smul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
det
Fintype.card
β€”subsingleton_of_empty_right
Fintype.card_eq_zero_iff
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
MvPolynomial.instIsCancelMulZeroOfIsCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Int.instIsCancelMulZero
det_mvPolynomialX_ne_zero
Int.instNontrivial
IsSMulRegular.matrix
smul_smul
pow_succ'
det_smul_adjugate_adjugate
mvPolynomialX_mapMatrix_aeval
AlgHom.map_adjugate
AlgHom.map_det
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.mapMatrix_apply
map_smul'
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
adjugate_adjugate' πŸ“–mathematicalβ€”adjugate
Matrix
smul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
det
Fintype.card
β€”adjugate_adjugate
LT.lt.ne'
Fintype.one_lt_card
adjugate_apply πŸ“–mathematicalβ€”adjugate
det
updateRow
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”adjugate_def
of_apply
cramer_apply
updateCol_transpose
det_transpose
adjugate_conjTranspose πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
StarRing.toStarAddMonoid
adjugate
β€”RingHom.map_adjugate
adjugate_transpose
adjugate_def πŸ“–mathematicalβ€”adjugate
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
of
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
cramer
transpose
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”
adjugate_diagonal πŸ“–mathematicalβ€”adjugate
diagonal
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.prod
CommRing.toCommMonoid
Finset.erase
Finset.univ
β€”ext
diagonal_transpose
eq_or_ne
diagonal_apply_eq
diagonal_updateCol_single
det_diagonal
Finset.prod_update_of_mem
Finset.mem_univ
Finset.sdiff_singleton_eq_erase
one_mul
diagonal_apply_ne
det_eq_zero_of_row_eq_zero
updateCol_self
Pi.single_eq_of_ne'
updateCol_ne
diagonal_apply_ne'
adjugate_eq_one_of_card_eq_one πŸ“–mathematicalFintype.cardadjugate
Matrix
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”adjugate_subsingleton
Fintype.card_le_one_iff_subsingleton
Eq.le
adjugate_fin_one πŸ“–mathematicalβ€”adjugate
Fin.fintype
Matrix
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”adjugate_subsingleton
adjugate_fin_succ_eq_det_submatrix πŸ“–mathematicalβ€”adjugate
Fin.fintype
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
det
submatrix
Fin.succAbove
β€”adjugate_apply
det_succ_row
Finset.sum_congr
updateRow_self
det.congr_simp
submatrix_updateRow_succAbove
Fintype.sum_eq_single
Pi.single_eq_of_ne
MulZeroClass.mul_zero
MulZeroClass.zero_mul
Pi.single_eq_same
mul_one
adjugate_fin_three πŸ“–mathematicalβ€”adjugate
Fin.fintype
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
of
vecCons
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
vecEmpty
β€”ext
adjugate_fin_succ_eq_det_submatrix
det_fin_two
Fintype.complete
add_zero
pow_zero
one_mul
cons_val'
cons_val_fin_one
pow_one
Nat.instZeroLEOneClass
neg_mul
neg_sub
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Even.neg_pow
Nat.instAtLeastTwoHAddOfNat
one_pow
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instCharZero
zero_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Meta.NormNum.isInt_pow
Mathlib.Meta.NormNum.intPow_negOfNat_bit1
Mathlib.Meta.NormNum.one_natPow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.intPow_negOfNat_bit0
adjugate_fin_three_of πŸ“–mathematicalβ€”adjugate
Fin.fintype
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
of
vecCons
vecEmpty
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”adjugate_fin_three
adjugate_fin_two πŸ“–mathematicalβ€”adjugate
Fin.fintype
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
of
vecCons
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
vecEmpty
β€”ext
adjugate_fin_succ_eq_det_submatrix
Fintype.complete
add_zero
pow_zero
det_unique
one_mul
cons_val'
cons_val_fin_one
pow_one
Fin.succAbove_ne_zero_zero
Fin.instNeZeroHAddNatOfNat_mathlib_1
neg_mul
zero_add
Even.neg_pow
Nat.instAtLeastTwoHAddOfNat
one_pow
adjugate_fin_two_of πŸ“–mathematicalβ€”adjugate
Fin.fintype
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
of
vecCons
vecEmpty
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
β€”adjugate_fin_two
adjugate_fin_zero πŸ“–mathematicalβ€”adjugate
Fin.fintype
Matrix
zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”subsingleton_of_empty_right
Fin.isEmpty'
adjugate_mul πŸ“–mathematicalβ€”Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
adjugate
smul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
det
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”adjugate_transpose
transpose_mul
transpose_transpose
mul_adjugate
det_transpose
transpose_smul
transpose_one
adjugate_mul_distrib πŸ“–mathematicalβ€”adjugate
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”ext
Polynomial.eval_add
Polynomial.eval_C
Polynomial.eval_mul
Polynomial.eval_X
MulZeroClass.zero_mul
add_zero
RingHom.map_adjugate
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Polynomial.Monic.isRegular
det.congr_simp
add_comm
Polynomial.leadingCoeff_det_X_one_add_C
RingHom.map_mul
adjugate_mul_distrib_aux
IsRegular.left
adjugate_mul_distrib_aux πŸ“–mathematicalIsLeftRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
det
adjugate
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”det_mul
IsLeftRegular.mul
IsRegular.left
isRegular_of_isLeftRegular_det
mul_adjugate
mul_assoc
smul_mul
IsScalarTower.right
one_mul
mul_smul
Algebra.to_smulCommClass
smul_smul
mul_comm
adjugate_one πŸ“–mathematicalβ€”adjugate
Matrix
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”ext
transpose_one
cramer_one
Pi.single_apply
adjugate_pow πŸ“–mathematicalβ€”adjugate
Matrix
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”pow_zero
adjugate_one
pow_succ'
adjugate_mul_distrib
pow_succ
adjugate_reindex πŸ“–mathematicalβ€”adjugate
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
reindex
β€”adjugate_submatrix_equiv_self
adjugate_smul πŸ“–mathematicalβ€”adjugate
Matrix
smul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Fintype.card
β€”adjugate.eq_1
transpose_smul
Function.smulCommClass
Algebra.to_smulCommClass
cramer_smul
adjugate_submatrix_equiv_self πŸ“–mathematicalβ€”adjugate
submatrix
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”ext
Function.update_comp_equiv
adjugate_apply
submatrix_apply
det_submatrix_equiv_self
updateRow_submatrix_equiv
adjugate_subsingleton πŸ“–mathematicalβ€”adjugate
Matrix
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”ext
adjugate.congr_simp
adjugate_apply
det_eq_elem_of_subsingleton
updateRow.congr_simp
updateRow_self
Pi.single_eq_same
adjugate_transpose πŸ“–mathematicalβ€”transpose
adjugate
β€”ext
transpose_apply
adjugate_apply
updateRow_transpose
det_transpose
det_apply'
Finset.sum_congr
Equiv.injective
updateRow_apply
updateCol_apply
Pi.single_eq_same
Finset.prod_eq_zero
Finset.mem_univ
updateCol_self
Pi.single_eq_of_ne'
updateRow.congr_simp
Equiv.apply_symm_apply
updateRow_self
Pi.single_eq_of_ne
Equiv.symm_apply_eq
adjugate_zero πŸ“–mathematicalβ€”adjugate
Matrix
zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”ext
exists_ne
det_eq_zero_of_column_eq_zero
updateCol_ne
cramerMap_is_linear πŸ“–mathematicalβ€”IsLinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
cramerMap
β€”det_updateCol_add
det_updateCol_smul
cramer_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
cramer
det
updateCol
β€”β€”
cramer_eq_adjugate_mulVec πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
cramer
mulVec
adjugate
β€”transpose_transpose
adjugate_transpose
adjugate_def
pi_eq_sum_univ
mul_ite
mul_one
MulZeroClass.mul_zero
Pi.single_apply
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finset.sum_congr
map_smul
SemilinearMapClass.toMulActionSemiHomClass
Finset.sum_apply
mul_comm
cramer_is_linear πŸ“–mathematicalβ€”IsLinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
cramerMap
β€”IsLinearMap.map_add
cramerMap_is_linear
IsLinearMap.map_smul
cramer_one πŸ“–mathematicalβ€”cramer
Matrix
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Pi.Function.module
Semiring.toModule
Module.End.instOne
β€”LinearMap.pi_ext'
Finite.of_fintype
LinearMap.ext_ring
RingHomCompTriple.ids
det_one
cramer_row_self
one_eq_pi_single
Pi.single_comm
cramer_reindex πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
cramer
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
reindex
Equiv.symm
β€”cramer_submatrix_equiv
cramer_row_self πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
cramer
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
det
β€”transpose_transpose
det_transpose
cramer_transpose_row_self
cramer_smul πŸ“–mathematicalβ€”cramer
Matrix
smul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
LinearMap.instSMul
Pi.distribSMul
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
NonUnitalNonAssocSemiring.toDistribSMul
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
DistribSMul.toSMulZeroClass
Algebra.to_smulCommClass
Monoid.toNatPow
Fintype.card
β€”LinearMap.ext
Function.smulCommClass
Algebra.to_smulCommClass
det_updateCol_smul_left
cramer_submatrix_equiv πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
cramer
submatrix
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”det.congr_simp
updateCol_submatrix_equiv
det_submatrix_equiv_self
cramer_subsingleton_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
cramer
β€”cramer_apply
det_eq_elem_of_subsingleton
updateCol_self
cramer_transpose_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
cramer
transpose
det
updateRow
β€”cramer_apply
updateCol_transpose
det_transpose
cramer_transpose_row_self πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
cramer
transpose
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
det
β€”cramer_apply
Pi.single_apply
det.congr_simp
updateCol_transpose
updateRow_eq_self
det_transpose
det_zero_of_row_eq
updateRow_self
updateRow_ne
cramer_zero πŸ“–mathematicalβ€”cramer
Matrix
zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Pi.Function.module
Semiring.toModule
LinearMap.instZero
β€”LinearMap.pi_ext'
Finite.of_fintype
LinearMap.ext_ring
RingHomCompTriple.ids
exists_ne
det_eq_zero_of_column_eq_zero
updateCol_ne
det_adjugate πŸ“–mathematicalβ€”det
adjugate
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Fintype.card
β€”pow_zero
adjugate_subsingleton
IsEmpty.instSubsingleton
Fintype.card_eq_zero_iff
det_one
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
LT.lt.nat_succ_le
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
MvPolynomial.instIsCancelMulZeroOfIsCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Int.instIsCancelMulZero
det_mvPolynomialX_ne_zero
Int.instNontrivial
det_mul
mul_adjugate
det_smul
mul_one
pow_succ'
mvPolynomialX_mapMatrix_aeval
AlgHom.map_adjugate
AlgHom.map_det
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
det_eq_sum_mul_adjugate_col πŸ“–mathematicalβ€”det
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
adjugate
β€”det_transpose
Finset.sum_congr
det_eq_sum_mul_adjugate_row
det_eq_sum_mul_adjugate_row πŸ“–mathematicalβ€”det
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
adjugate
β€”Fintype.card_ne_zero
det_succ_row
Finset.sum_congr
mul_assoc
mul_left_comm
Equiv.symm_apply_apply
adjugate.congr_simp
Equiv.sum_comp
adjugate_reindex
det_reindex_self
det_smul_adjugate_adjugate πŸ“–mathematicalβ€”Matrix
smul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
det
adjugate
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Fintype.card
β€”adjugate_mul_distrib
adjugate_mul
adjugate_smul
adjugate_one
one_mul
smul_mul
IsScalarTower.right
mul_one
mul_smul
Algebra.to_smulCommClass
mul_adjugate
mul_assoc
isRegular_of_isLeftRegular_det πŸ“–mathematicalIsLeftRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
det
IsRegular
Matrix
instMulOfFintypeOfAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”IsLeftRegular.matrix
one_mul
smul_mul
IsScalarTower.right
adjugate_mul
mul_assoc
mul_one
mul_smul
Algebra.to_smulCommClass
mul_adjugate
mulVec_cramer πŸ“–mathematicalβ€”mulVec
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
cramer
Function.hasSMul
Algebra.toSMul
Algebra.id
det
β€”cramer_eq_adjugate_mulVec
mulVec_mulVec
mul_adjugate
smul_mulVec
IsScalarTower.right
one_mulVec
mul_adjugate πŸ“–mathematicalβ€”Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
adjugate
smul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
det
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”ext
mul_apply
Pi.smul_apply
one_apply
smul_eq_mul
mul_boole
Finset.sum_congr
mul_adjugate_apply
sum_cramer_apply
Pi.single_apply
Finset.sum_ite_eq
cramer_transpose_row_self
mul_adjugate_apply πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
adjugate
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
cramer
transpose
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”smul_eq_mul
adjugate.eq_1
of_apply
Pi.smul_apply
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
Pi.single_smul'
mul_one
sum_cramer πŸ“–mathematicalβ€”Finset.sum
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
cramer
β€”map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
sum_cramer_apply πŸ“–mathematicalβ€”Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
cramer
β€”Finset.sum_apply
sum_cramer
cramer_apply

Matrix.IsSymm

Theorems

NameKindAssumesProvesValidatesDepends On
adjugate πŸ“–mathematicalMatrix.IsSymmMatrix.adjugateβ€”eq_1
Matrix.adjugate_transpose
eq

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
map_adjugate πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Matrix
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instFunLike
mapMatrix
Matrix.adjugate
β€”Matrix.ext
map_one
Pi.single_op
map_zero
Matrix.adjugate_apply
mapMatrix_apply
Matrix.map_apply
Matrix.map_updateRow
map_det

---

← Back to Index