π Source: Mathlib/LinearAlgebra/Matrix/Charpoly/Basic.lean
charmatrix
charpoly
of_charmatrix
aeval_self_charpoly
charmatrix_apply
charmatrix_apply_eq
charmatrix_apply_ne
charmatrix_blockTriangular_iff
charmatrix_diagonal
charmatrix_fromBlocks
charmatrix_map
charmatrix_natCast
charmatrix_ofNat
charmatrix_one
charmatrix_reindex
charmatrix_toSquareBlock
charmatrix_transpose
charmatrix_zero
charpoly_diagonal
charpoly_fromBlocks_zeroββ
charpoly_fromBlocks_zeroββ
charpoly_isEmpty
charpoly_map
charpoly_mul_comm
charpoly_mul_comm'
charpoly_mul_comm_of_le
charpoly_natCast
charpoly_ofNat
charpoly_of_upperTriangular
charpoly_one
charpoly_reindex
charpoly_sub_scalar
charpoly_transpose
charpoly_units_conj
charpoly_units_conj'
charpoly_vecMulVec
charpoly_zero
eval_charpoly
matPolyEquiv_charmatrix
Algebra.Norm.Transitivity.polyToMatrix_cornerAddX
charmatrix_apply_natDegree
BlockTriangular.charmatrix
charmatrix_apply_natDegree_le
matPolyEquiv_eq_X_pow_sub_C
LinearMap.charpoly_def
pow_eq_aeval_mod_charpoly
coeff_charpoly_mem_ideal_pow
ZMod.charpoly_pow_card
mem_spectrum_iff_isRoot_charpoly
trace_eq_neg_charpoly_coeff
IsHermitian.eigenvalues_eq_eigenvalues_iff
minpoly_dvd_charpoly
IsHermitian.charpoly_cfc_eq
charpoly_degree_eq_dim
charpoly_leftMulMatrix
charpoly.univ_coeff_evalβHom
charpoly_toLin
reverse_charpoly
trace_eq_sum_roots_charpoly
IsHermitian.roots_charpoly_eq_eigenvalues
IsHermitian.splits_charpoly
LinearMap.polyCharpolyAux_eval_eq_toMatrix_charpoly_coeff
IsHermitian.sort_roots_charpoly_eq_eigenvaluesβ
charpoly_toLin'
trace_eq_neg_charpoly_nextCoeff
charpoly_fin_two
FiniteField.Matrix.charpoly_pow_card
charpoly_mulVecLin
charpoly_coeff_eq_prod_coeff_of_le
charpoly_natDegree_eq_dim
charpoly_sub_diagonal_degree_lt
IsHermitian.roots_charpoly_eq_eigenvaluesβ
det_eq_prod_roots_charpoly
charpoly_inv
charpoly.univ_map_evalβHom
charpoly_monic
IsHermitian.charpoly_eq
aeval_eq_aeval_mod_charpoly
det_eq_sign_charpoly_coeff
BlockTriangular.charpoly
charpoly_of_card_eq_two
LinearMap.charpoly_toMatrix
LinearMap.polyCharpolyAux_map_eq_toMatrix_charpoly
isNilpotent_charpoly_sub_pow_of_isNilpotent
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Matrix
Polynomial.semiring
semiring
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebra
AlgHom.funLike
Polynomial.aeval
zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
adjugate_mul
Polynomial.eval_map
matPolyEquiv_smul_one
Polynomial.eval_mul_X_sub_C
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Polynomial.instSub
CommRing.toRing
diagonal
Polynomial.instZero
Polynomial.X
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
diagonal_apply_eq
Polynomial.instNeg
diagonal_apply_ne
BlockTriangular
Preorder.toLT
charmatrix.eq_1
scalar_apply
RingHom.mapMatrix_apply
BlockTriangular.sub_iff_right
blockTriangular_diagonal
diagonal_map
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
diagonal_sub
instFintypeSum
fromBlocks
neg
map
ext
Polynomial.ext
Polynomial.coeff_sub
zero_sub
Polynomial.coeff_neg
Polynomial.map
map_map
Polynomial.map_sub
Polynomial.map_X
Polynomial.map_C
Polynomial.map_neg
instNatCastOfZero
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Polynomial.instNatCast
one
AddMonoidWithOne.toOne
Polynomial.instOne
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reindex
charmatrix.congr_simp
EquivLike.toEmbeddingLike
Subtype.fintype
toSquareBlock
transpose
transpose_map
transpose_sub
diagonal_transpose
nonAssocSemiring
scalar
sub_zero
Finset.prod
CommRing.toCommMonoid
Polynomial.commRing
Finset.univ
det.congr_simp
det_diagonal
Polynomial.instMul
Polynomial.C_0
neg_zero
det_fromBlocks_zeroββ
det_fromBlocks_zeroββ
coe_det_isEmpty
charpoly.eq_1
Polynomial.coe_mapRingHom
RingHom.map_det
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocSemiring.toAddCommMonoid
IsRegular.left
Polynomial.isRegular_X_pow
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Fintype.card
fromBlocks_multiply
mul_neg
mul_one
mul_zero
zero_add
one_mul
neg_add_cancel
RingHomClass.toNonUnitalRingHomClass
neg_smul
smul_eq_mul_diagonal
neg_mul
zero_mul
add_zero
scalar_comm
add_neg_cancel
sub_eq_add_neg
neg_add_eq_sub
neg_sub
det_neg
diagonal_neg
Finset.prod_const
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.one_pow
IsUnit.isRegular
IsUnit.pow
isUnit_neg_one
det_mul_comm
mul_assoc
pow_add
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
det_of_upperTriangular
Finset.prod_congr
det_reindex_self
sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Polynomial.comp
Polynomial.instAdd
det_apply
Polynomial.sum_comp
Finset.sum_congr
Polynomial.smul_comp
Units.instIsScalarTower
IsScalarTower.right
Polynomial.prod_comp
map_sub
RingHomClass.toAddMonoidHomClass
Polynomial.sub_comp
Polynomial.X_comp
Polynomial.C_comp
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Polynomial.neg_comp
det_transpose
Units.val
Units
Units.instInv
charpoly.congr_simp
coe_units_inv
nonsing_inv_mul
vecMulVec
Algebra.toSMul
dotProduct
isEmpty_or_nonempty
Fintype.card_eq_zero
pow_zero
dotProduct_of_isEmpty
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
zero_smul
NeZero.one_le
Fintype.instNeZeroNatCardOfNonempty
vecMulVec_eq
Fintype.card_unique
det_unique
dotProduct_comm
mul_sub
Polynomial.X_pow_mul_C
Polynomial.smul_eq_C_mul
Polynomial.eval
det
Polynomial.coe_evalRingHom
eq_or_ne
Polynomial.eval_sub
Polynomial.eval_X
Polynomial.eval_C
Polynomial.eval_neg
AlgEquiv
AlgEquiv.instFunLike
matPolyEquiv
instRing
matPolyEquiv_coeff_apply
Polynomial.coeff_X
Polynomial.coeff_C
one_apply_eq
sub_self
one_apply_ne
Matrix.BlockTriangular
Matrix.charmatrix
Matrix.charmatrix_blockTriangular_iff
Matrix.charpoly
Finset.image
LinearOrder.toDecidableEq
Matrix.toSquareBlock
Matrix.det.congr_simp
Matrix.charmatrix_toSquareBlock
---
β Back to Index