Documentation Verification Report

Eigs

📁 Source: Mathlib/LinearAlgebra/Matrix/Charpoly/Eigs.lean

Statistics

MetricCount
Definitions0
Theoremsdet_eq_prod_roots_charpoly, det_eq_prod_roots_charpoly_of_splits, mem_spectrum_iff_isRoot_charpoly, mem_spectrum_of_isRoot_charpoly, trace_eq_sum_roots_charpoly, trace_eq_sum_roots_charpoly_of_splits
6
Total6

Matrix

Theorems

NameKindAssumesProvesValidatesDepends On
det_eq_prod_roots_charpoly 📖mathematicaldet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Multiset.prod
CommRing.toCommMonoid
Polynomial.roots
instIsDomain
Field.toSemifield
charpoly
det_eq_prod_roots_charpoly_of_splits
IsAlgClosed.splits
det_eq_prod_roots_charpoly_of_splits 📖mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
charpoly
det
Multiset.prod
CommRing.toCommMonoid
Polynomial.roots
instIsDomain
Field.toSemifield
instIsDomain
det_eq_sign_charpoly_coeff
charpoly_natDegree_eq_dim
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.Splits.coeff_zero_eq_prod_roots_of_monic
charpoly_monic
mul_assoc
pow_two
pow_right_comm
neg_one_sq
one_pow
one_mul
mem_spectrum_iff_isRoot_charpoly 📖mathematicalSet
Set.instMembership
spectrum
Matrix
Semifield.toCommSemiring
Field.toSemifield
instRing
DivisionRing.toRing
Field.toDivisionRing
instAlgebra
Ring.toSemiring
Algebra.id
Polynomial.IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
charpoly
eval_charpoly
mem_spectrum_of_isRoot_charpoly 📖mathematicalPolynomial.IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
charpoly
Set
Set.instMembership
spectrum
Matrix
instRing
CommRing.toRing
instAlgebra
Ring.toSemiring
Algebra.id
eval_charpoly
NeZero.one
trace_eq_sum_roots_charpoly 📖mathematicaltrace
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Multiset.sum
Polynomial.roots
instIsDomain
Field.toSemifield
charpoly
trace_eq_sum_roots_charpoly_of_splits
IsAlgClosed.splits
trace_eq_sum_roots_charpoly_of_splits 📖mathematicalPolynomial.Splits
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
charpoly
trace
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Multiset.sum
Polynomial.roots
instIsDomain
Field.toSemifield
instIsDomain
isEmpty_or_nonempty
trace.eq_1
Fintype.sum_empty
charpoly.eq_1
det_eq_one_of_card_eq_zero
Fintype.card_eq_zero_iff
Polynomial.roots_one
Multiset.empty_eq_zero
Multiset.sum_zero
trace_eq_neg_charpoly_nextCoeff
neg_eq_iff_eq_neg
Polynomial.Splits.nextCoeff_eq_neg_sum_roots_of_monic
charpoly_monic

---

← Back to Index