Documentation Verification Report

Minpoly

πŸ“ Source: Mathlib/LinearAlgebra/Matrix/Charpoly/Minpoly.lean

Statistics

MetricCount
Definitions0
Theoremsminpoly_toMatrix, minpoly_toMatrix', isIntegral, minpoly_dvd_charpoly, minpoly_toLin, minpoly_toLin', charpoly_leftMulMatrix
7
Total7

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
minpoly_toMatrix πŸ“–mathematicalβ€”minpoly
Matrix
Matrix.instRing
CommRing.toRing
Matrix.instAlgebra
CommRing.toCommSemiring
Ring.toSemiring
Algebra.id
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
AddCommGroup.toAddCommMonoid
addCommMonoid
Matrix.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Matrix.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toMatrix
Finite.of_fintype
Module.End.instRing
Module.End.instAlgebra
CommRing.toCommMonoid
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”minpoly.algEquiv_eq
smulCommClass_self
IsScalarTower.left
minpoly_toMatrix' πŸ“–mathematicalβ€”minpoly
Matrix
Matrix.instRing
CommRing.toRing
Matrix.instAlgebra
CommRing.toCommSemiring
Ring.toSemiring
Algebra.id
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
addCommMonoid
Matrix.addCommMonoid
module
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.to_smulCommClass
Matrix.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toMatrix'
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.End.instRing
Pi.addCommGroup
Ring.toAddCommGroup
Module.End.instAlgebra
Algebra.toSMul
Pi.isScalarTower
IsScalarTower.right
β€”minpoly.algEquiv_eq
Function.smulCommClass
Algebra.to_smulCommClass
Pi.isScalarTower
IsScalarTower.right

Matrix

Theorems

NameKindAssumesProvesValidatesDepends On
isIntegral πŸ“–mathematicalβ€”IsIntegral
Matrix
instRing
CommRing.toRing
instAlgebra
CommRing.toCommSemiring
Ring.toSemiring
Algebra.id
β€”charpoly_monic
aeval_self_charpoly
minpoly_dvd_charpoly πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
minpoly
Matrix
instRing
DivisionRing.toRing
Field.toDivisionRing
instAlgebra
Ring.toSemiring
Algebra.id
charpoly
β€”minpoly.dvd
aeval_self_charpoly
minpoly_toLin πŸ“–mathematicalβ€”minpoly
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Module.End.instRing
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
Matrix
addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
LinearMap.addCommMonoid
module
Semiring.toModule
LinearMap.module
CommSemiring.toCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toLin
Finite.of_fintype
instRing
instAlgebra
β€”minpoly.algEquiv_eq
smulCommClass_self
IsScalarTower.left
minpoly_toLin' πŸ“–mathematicalβ€”minpoly
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
Module.End.instRing
Pi.addCommGroup
Ring.toAddCommGroup
CommRing.toRing
Module.End.instAlgebra
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
Algebra.toSMul
Pi.isScalarTower
IsScalarTower.right
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
Matrix
addCommMonoid
LinearMap.addCommMonoid
module
LinearMap.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toLin'
instRing
instAlgebra
Ring.toSemiring
β€”minpoly.algEquiv_eq
Function.smulCommClass
Algebra.to_smulCommClass
Pi.isScalarTower
IsScalarTower.right

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
charpoly_leftMulMatrix πŸ“–mathematicalβ€”Matrix.charpoly
PowerBasis.dim
Fin.fintype
DFunLike.coe
AlgHom
Matrix
CommRing.toCommSemiring
Ring.toSemiring
Matrix.semiring
CommSemiring.toSemiring
Matrix.instAlgebra
Algebra.id
AlgHom.funLike
Algebra.leftMulMatrix
PowerBasis.basis
PowerBasis.gen
minpoly
β€”subsingleton_or_nontrivial
Unique.instSubsingleton
minpoly.unique'
Matrix.charpoly_monic
injective_iff_map_eq_zero
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Algebra.leftMulMatrix_injective
Polynomial.aeval_algHom_apply
Matrix.aeval_self_charpoly
Mathlib.Tactic.Contrapose.contrapose₃
PowerBasis.dim_le_degree_of_root
Fintype.card_fin
Matrix.charpoly_degree_eq_dim

---

← Back to Index