Documentation Verification Report

Univ

šŸ“ Source: Mathlib/LinearAlgebra/Matrix/Charpoly/Univ.lean

Statistics

MetricCount
Definitionsuniv
1
TheoremsoptionEquivLeft_symm_univ_isHomogeneous, univ_coeff_card, univ_coeff_evalā‚‚Hom, univ_coeff_isHomogeneous, univ_map_evalā‚‚Hom, univ_map_map, univ_monic, univ_natDegree
8
Total9

Matrix.charpoly

Definitions

NameCategoryTheorems
univ šŸ“–CompOp
9 mathmath: univ_map_map, univ_monic, univ_coeff_evalā‚‚Hom, optionEquivLeft_symm_univ_isHomogeneous, univ_coeff_isHomogeneous, LinearMap.polyCharpoly_eq_of_basis, univ_natDegree, univ_map_evalā‚‚Hom, univ_coeff_card

Theorems

NameKindAssumesProvesValidatesDepends On
optionEquivLeft_symm_univ_isHomogeneous šŸ“–mathematical—MvPolynomial.IsHomogeneous
CommRing.toCommSemiring
DFunLike.coe
AlgEquiv
Polynomial
MvPolynomial
CommSemiring.toSemiring
MvPolynomial.commSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
MvPolynomial.algebra
Algebra.id
AlgEquiv.instFunLike
AlgEquiv.symm
MvPolynomial.optionEquivLeft
univ
Fintype.card
—Finset.sum_const
mul_one
zero_add
Matrix.det.congr_simp
Matrix.det_apply'
Finset.sum_congr
Finset.prod_congr
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
map_intCast
AlgHomClass.toRingHomClass
map_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_sub
Polynomial.aevalTower_C
MvPolynomial.rename_X
MvPolynomial.IsHomogeneous.sum
MvPolynomial.IsHomogeneous.mul
MvPolynomial.isHomogeneous_C
MvPolynomial.IsHomogeneous.prod
Polynomial.aevalTower_X
map_zero
MonoidWithZeroHomClass.toZeroHomClass
AlgHom.algHomClass
zero_sub
MvPolynomial.IsHomogeneous.neg
MvPolynomial.isHomogeneous_X
univ_coeff_card šŸ“–mathematical—Polynomial.coeff
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
univ
Fintype.card
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
—univ_natDegree
Int.instNontrivial
Polynomial.Monic.leadingCoeff
univ_monic
univ_map_map
Polynomial.coeff_map
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
univ_coeff_evalā‚‚Hom šŸ“–mathematical—DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.evalā‚‚Hom
Polynomial.coeff
univ
Matrix.charpoly
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
—univ_map_evalā‚‚Hom
Polynomial.coeff_map
univ_coeff_isHomogeneous šŸ“–mathematicalFintype.cardMvPolynomial.IsHomogeneous
CommRing.toCommSemiring
Polynomial.coeff
MvPolynomial
CommSemiring.toSemiring
MvPolynomial.commSemiring
univ
—MvPolynomial.IsHomogeneous.coeff_isHomogeneous_of_optionEquivLeft_symm
Finite.instProd
Finite.of_fintype
optionEquivLeft_symm_univ_isHomogeneous
univ_map_evalā‚‚Hom šŸ“–mathematical—Polynomial.map
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.evalā‚‚Hom
univ
Matrix.charpoly
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
—univ.eq_1
Matrix.charpoly_map
MvPolynomial.coe_evalā‚‚Hom
Matrix.mvPolynomialX_map_evalā‚‚
congr_simp
univ_map_map šŸ“–mathematical—Polynomial.map
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.map
univ
—MvPolynomial.map.eq_1
univ_map_evalā‚‚Hom
univ_monic šŸ“–mathematical—Polynomial.Monic
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
univ
—Matrix.charpoly_monic
univ_natDegree šŸ“–mathematical—Polynomial.natDegree
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
univ
Fintype.card
—Matrix.charpoly_natDegree_eq_dim
MvPolynomial.nontrivial_of_nontrivial

---

← Back to Index