| Name | Category | Theorems |
conjTranspose π | CompOp | 158 mathmath: posSemidef_conjTranspose_mul_self, star_eq_conjTranspose, isHermitian_conjTranspose_mul_mul, posSemidef_iff_eq_conjTranspose_mul_self, trace_mul_conjTranspose_self_eq_zero_iff, isHermitian_conjTranspose_mul_self, conjTranspose_sum, IsHermitian.conjTranspose, IsHermitian.fromBlocksββ, posSemidef_self_mul_conjTranspose, IsHermitian.eq, HasSum.matrix_conjTranspose, conjTranspose_mul_self_mulVec_eq_zero, conjTranspose_natCast_smul, isHermitian_mul_conjTranspose_self, PosDef.fromBlocksββ, Continuous.matrix_conjTranspose, conjTranspose_eq_transpose_of_trivial, conjTranspose_inv_intCast_smul, conjTranspose_natCast, PosSemidef.conjTranspose_mul_mul_same, CStarMatrix.inner_toCLM_conjTranspose_left, conjTranspose_sub, conjTranspose_eq_diagonal, isHermitian_conjTranspose_iff, ker_mulVecLin_conjTranspose_mul_self, conjTranspose_permMatrix, rank_conjTranspose, conjTranspose_tsum, PosDef.conjTranspose_mul_mul_same, fromBlocks_conjTranspose, conjTranspose_kronecker, star_vec_dotProduct_vec, conjTranspose_zero, star_vecMul, conjTranspose_inv_natCast_smul, eigenvalues_conjTranspose_mul_self_nonneg, frobenius_norm_conjTranspose, Fin.conjTranspose_circulant, IsSymm.conjTranspose, conjTranspose_zsmul, det_conjTranspose, conjTranspose_nonsing_inv, l2_opNorm_conjTranspose_mul_self, conjTranspose_swap, posDef_conjTranspose_iff, PosSemidef.mul_mul_conjTranspose_same, adjugate_conjTranspose, LDL.lower_conj_diag, l2_opNNNorm_conjTranspose, conjTranspose_inv_ofNat_smul, summable_matrix_conjTranspose, conjTranspose_replicateRow, schur_complement_eqββ, transpose_conjTranspose, eigenvalues_self_mul_conjTranspose_nonneg, blockDiagonal_conjTranspose, l2_opNorm_conjTranspose, conjTranspose_eq_natCast, PosDef.conjTranspose_mul_self, conjTranspose_submatrix, conjTranspose_kroneckerTMul, conjTranspose_ratCast_smul, conjTranspose_list_sum, exp_conjTranspose, conjTranspose_eq_ofNat, isDiag_conjTranspose_iff, posDef_iff_eq_conjTranspose_mul_self, conjTranspose_eq_intCast, vecMul_conjTranspose_mul_self_eq_zero, trace_conjTranspose_mul_self_eq_zero_iff, trace_conjTranspose, diagonal_conjTranspose, conjTransposeAddEquiv_apply, conjTranspose_fromCols_eq_fromRows_conjTranspose, PosSemidef.conjTranspose, rank_self_mul_conjTranspose, conjTransposeRingEquiv_symm_apply, conjTranspose_fromRows_eq_fromCols_conjTranspose, schur_complement_eqββ, conjTranspose_one, conjTranspose_zpow, PosDef.fromBlocksββ, toLin_conjTranspose, norm_conjTranspose, isHermitian_add_transpose_self, isUnit_conjTranspose, toEuclideanLin_conjTranspose_eq_adjoint, nnnorm_conjTranspose, mulVec_conjTranspose, conjTranspose_eq_one, conjTranspose_inj, isHermitian_fromBlocks_iff, isHermitian_transpose_add_self, vecMul_conjTranspose, self_mul_conjTranspose_mulVec_eq_zero, blockDiag'_conjTranspose, conjTranspose_pow, Summable.matrix_conjTranspose, IsDiag.conjTranspose, conjTranspose_intCast_smul, conjTranspose_apply, conjTranspose_multiset_sum, conjTranspose_ofNat_smul, updateCol_conjTranspose, IsHermitian.fromBlocksββ, conjTranspose_eq_zero, PosDef.mul_mul_conjTranspose_same, conjTranspose_neg, LDL.diag_eq_lowerInv_conj, conjTranspose_list_prod, self_mul_conjTranspose_mul_eq_zero, conjTranspose_smul_non_comm, conjTranspose_single, conjTranspose_vecMulVec, conjTranspose_transpose, conjTranspose_mul_self_eq_zero, conjTranspose_rat_smul, OrthonormalBasis.toMatrix_orthonormalBasis_self_mul_conjTranspose, conjTransposeRingEquiv_apply, conjTranspose_smul, OrthonormalBasis.toMatrix_orthonormalBasis_conjTranspose_mul_self, vecMul_self_mul_conjTranspose_eq_zero, isHermitian_mul_mul_conjTranspose, updateRow_conjTranspose, l2_opNNNorm_conjTranspose_mul_self, isHermitian_transpose_mul_self, inner_matrix_row_row, conjTranspose_mul_self_mul_eq_zero, conjTranspose_conjTranspose, conjTranspose_intCast, conjTranspose_smul_self, conjTranspose_add, conjTranspose_map, conjTranspose_kronecker', LinearMap.toMatrix_adjoint, conjTranspose_circulant, self_mul_conjTranspose_eq_zero, conjTranspose_mul, conjTranspose_injective, posSemidef_conjTranspose_iff, PosDef.mul_conjTranspose_self, frobenius_nnnorm_conjTranspose, conjTranspose_ofNat, rank_conjTranspose_mul_self, PosDef.conjTranspose, diag_conjTranspose, blockDiag_conjTranspose, conjTranspose_replicateCol, blockDiagonal'_conjTranspose, mul_self_mul_conjTranspose_eq_zero, inner_matrix_col_col, conjTranspose_invOf, CStarMatrix.inner_toCLM_conjTranspose_right, mul_conjTranspose_mul_self_eq_zero, conjTranspose_nsmul, star_mulVec, conjTranspose_reindex
|
conjTransposeAddEquiv π | CompOp | 3 mathmath: conjTransposeLinearEquiv_apply, conjTransposeAddEquiv_apply, conjTransposeAddEquiv_symm
|
conjTransposeLinearEquiv π | CompOp | 2 mathmath: conjTransposeLinearEquiv_apply, conjTransposeLinearEquiv_symm
|
conjTransposeRingEquiv π | CompOp | 2 mathmath: conjTransposeRingEquiv_symm_apply, conjTransposeRingEquiv_apply
|
instInvolutiveStar π | CompOp | β |
instStar π | CompOp | 54 mathmath: l2_opNorm_toEuclideanCLM, kroneckerTMulStarAlgEquiv_symm_apply, star_eq_conjTranspose, IsHermitian.isClosedEmbedding_cfcAux, IsHermitian.det_abs, cstar_nnnorm_def, IsHermitian.cfc_eq, instContinuousStarMatrix, PosSemidef.sqrt_eq_zero_iff, IsHermitian.isSelfAdjoint, LinearMap.toMatrixOrthonormal_reindex, IsUnit.posSemidef_star_right_conjugate_iff, LinearMap.toMatrixOrthonormal_apply_apply, toAlgEquiv_kroneckerStarAlgEquiv, PosSemidef.det_sqrt, toAlgEquiv_kroneckerTMulStarAlgEquiv, mem_unitaryGroup_iff, IsHermitian.charpoly_cfc_eq, PosSemidef.posSemidef_sqrt, toEuclideanCLM_toLp, PosSemidef.sqrt_eq_one_iff, PosSemidef.sqrt_sq, star_apply, PosSemidef.eq_sqrt_iff_sq_eq, isHermitian_iff_isSelfAdjoint, LinearMap.toMatrixOrthonormal_symm_apply, IsHermitian.cfcAux_apply, ofLp_toEuclideanCLM, kroneckerTMulStarAlgEquiv_apply, instStarModule, UnitaryGroup.inv_val, star_mul, PosSemidef.isUnit_sqrt_iff, coe_toEuclideanCLM_eq_toEuclideanLin, LinearMap.toMatrixOrthonormal_apply, PosSemidef.sq_sqrt, PosSemidef.inv_sqrt, CStarMatrix.ofMatrix_eq_ofMatrixStarAlgEquiv, IsHermitian.cfcAux_id, specialUnitaryGroup.coe_star, mem_unitaryGroup_iff', IsUnit.posSemidef_star_left_conjugate_iff, PosSemidef.sqrt_mul_self, cstar_norm_def, UnitaryGroup.star_mul_self, kroneckerStarAlgEquiv_apply, IsUnit.posDef_star_left_conjugate_iff, PosDef.posDef_sqrt, IsHermitian.star_eigenvectorUnitary_mulVec, IsHermitian.instContinuousFunctionalCalculus, kroneckerStarAlgEquiv_symm_apply, PosSemidef.sqrt_eq_iff_eq_sq, UnitaryGroup.inv_apply, IsUnit.posDef_star_right_conjugate_iff
|
instStarAddMonoid π | CompOp | 8 mathmath: kroneckerTMulStarAlgEquiv_symm_apply, frobenius_normedStarGroup, toAlgEquiv_kroneckerStarAlgEquiv, toAlgEquiv_kroneckerTMulStarAlgEquiv, kroneckerTMulStarAlgEquiv_apply, kroneckerStarAlgEquiv_apply, instNormedStarGroup, kroneckerStarAlgEquiv_symm_apply
|
instStarRing π | CompOp | 24 mathmath: IsHermitian.det_abs, IsHermitian.cfc_eq, PosSemidef.sqrt_eq_zero_iff, PosSemidef.det_sqrt, IsHermitian.charpoly_cfc_eq, PosSemidef.posSemidef_sqrt, PosSemidef.sqrt_eq_one_iff, PosSemidef.sqrt_sq, PosSemidef.eq_sqrt_iff_sq_eq, IsHermitian.cfcAux_apply, UnitaryGroup.inv_val, PosSemidef.isUnit_sqrt_iff, IsHermitian.spectral_theorem, PosSemidef.sq_sqrt, PosSemidef.inv_sqrt, IsHermitian.star_mul_self_mul_eq_diagonal, instCStarRing, PosSemidef.sqrt_mul_self, instStarOrderedRing, IsHermitian.conjStarAlgAut_star_eigenvectorUnitary, PosDef.posDef_sqrt, IsHermitian.instContinuousFunctionalCalculus, PosSemidef.sqrt_eq_iff_eq_sq, UnitaryGroup.inv_apply
|
Β«term_α΄΄Β» π | CompOp | β |