Documentation Verification Report

ConjTranspose

πŸ“ Source: Mathlib/LinearAlgebra/Matrix/ConjTranspose.lean

Statistics

MetricCount
DefinitionsconjTranspose, conjTransposeAddEquiv, conjTransposeLinearEquiv, conjTransposeRingEquiv, instInvolutiveStar, instStar, instStarAddMonoid, instStarRing, Β«term_α΄΄Β»
9
TheoremsconjTransposeAddEquiv_apply, conjTransposeAddEquiv_symm, conjTransposeLinearEquiv_apply, conjTransposeLinearEquiv_symm, conjTransposeRingEquiv_apply, conjTransposeRingEquiv_symm_apply, conjTranspose_add, conjTranspose_apply, conjTranspose_conjTranspose, conjTranspose_eq_diagonal, conjTranspose_eq_intCast, conjTranspose_eq_natCast, conjTranspose_eq_ofNat, conjTranspose_eq_one, conjTranspose_eq_transpose_of_trivial, conjTranspose_eq_zero, conjTranspose_inj, conjTranspose_injective, conjTranspose_intCast, conjTranspose_intCast_smul, conjTranspose_inv_intCast_smul, conjTranspose_inv_natCast_smul, conjTranspose_inv_ofNat_smul, conjTranspose_list_prod, conjTranspose_list_sum, conjTranspose_map, conjTranspose_mul, conjTranspose_multiset_sum, conjTranspose_natCast, conjTranspose_natCast_smul, conjTranspose_neg, conjTranspose_nsmul, conjTranspose_ofNat, conjTranspose_ofNat_smul, conjTranspose_one, conjTranspose_pow, conjTranspose_ratCast_smul, conjTranspose_rat_smul, conjTranspose_reindex, conjTranspose_single, conjTranspose_smul, conjTranspose_smul_non_comm, conjTranspose_smul_self, conjTranspose_sub, conjTranspose_submatrix, conjTranspose_sum, conjTranspose_transpose, conjTranspose_vecMulVec, conjTranspose_zero, conjTranspose_zsmul, diag_conjTranspose, diagonal_conjTranspose, dotProduct_star, instStarModule, mulVec_conjTranspose, star_apply, star_dotProduct, star_dotProduct_star, star_eq_conjTranspose, star_mul, star_mulVec, star_vecMul, transpose_conjTranspose, vecMul_conjTranspose
64
Total73

Matrix

Definitions

NameCategoryTheorems
conjTranspose πŸ“–CompOp
158 mathmath: posSemidef_conjTranspose_mul_self, star_eq_conjTranspose, isHermitian_conjTranspose_mul_mul, posSemidef_iff_eq_conjTranspose_mul_self, trace_mul_conjTranspose_self_eq_zero_iff, isHermitian_conjTranspose_mul_self, conjTranspose_sum, IsHermitian.conjTranspose, IsHermitian.fromBlocksβ‚‚β‚‚, posSemidef_self_mul_conjTranspose, IsHermitian.eq, HasSum.matrix_conjTranspose, conjTranspose_mul_self_mulVec_eq_zero, conjTranspose_natCast_smul, isHermitian_mul_conjTranspose_self, PosDef.fromBlocks₁₁, Continuous.matrix_conjTranspose, conjTranspose_eq_transpose_of_trivial, conjTranspose_inv_intCast_smul, conjTranspose_natCast, PosSemidef.conjTranspose_mul_mul_same, CStarMatrix.inner_toCLM_conjTranspose_left, conjTranspose_sub, conjTranspose_eq_diagonal, isHermitian_conjTranspose_iff, ker_mulVecLin_conjTranspose_mul_self, conjTranspose_permMatrix, rank_conjTranspose, conjTranspose_tsum, PosDef.conjTranspose_mul_mul_same, fromBlocks_conjTranspose, conjTranspose_kronecker, star_vec_dotProduct_vec, conjTranspose_zero, star_vecMul, conjTranspose_inv_natCast_smul, eigenvalues_conjTranspose_mul_self_nonneg, frobenius_norm_conjTranspose, Fin.conjTranspose_circulant, IsSymm.conjTranspose, conjTranspose_zsmul, det_conjTranspose, conjTranspose_nonsing_inv, l2_opNorm_conjTranspose_mul_self, conjTranspose_swap, posDef_conjTranspose_iff, PosSemidef.mul_mul_conjTranspose_same, adjugate_conjTranspose, LDL.lower_conj_diag, l2_opNNNorm_conjTranspose, conjTranspose_inv_ofNat_smul, summable_matrix_conjTranspose, conjTranspose_replicateRow, schur_complement_eqβ‚‚β‚‚, transpose_conjTranspose, eigenvalues_self_mul_conjTranspose_nonneg, blockDiagonal_conjTranspose, l2_opNorm_conjTranspose, conjTranspose_eq_natCast, PosDef.conjTranspose_mul_self, conjTranspose_submatrix, conjTranspose_kroneckerTMul, conjTranspose_ratCast_smul, conjTranspose_list_sum, exp_conjTranspose, conjTranspose_eq_ofNat, isDiag_conjTranspose_iff, posDef_iff_eq_conjTranspose_mul_self, conjTranspose_eq_intCast, vecMul_conjTranspose_mul_self_eq_zero, trace_conjTranspose_mul_self_eq_zero_iff, trace_conjTranspose, diagonal_conjTranspose, conjTransposeAddEquiv_apply, conjTranspose_fromCols_eq_fromRows_conjTranspose, PosSemidef.conjTranspose, rank_self_mul_conjTranspose, conjTransposeRingEquiv_symm_apply, conjTranspose_fromRows_eq_fromCols_conjTranspose, schur_complement_eq₁₁, conjTranspose_one, conjTranspose_zpow, PosDef.fromBlocksβ‚‚β‚‚, toLin_conjTranspose, norm_conjTranspose, isHermitian_add_transpose_self, isUnit_conjTranspose, toEuclideanLin_conjTranspose_eq_adjoint, nnnorm_conjTranspose, mulVec_conjTranspose, conjTranspose_eq_one, conjTranspose_inj, isHermitian_fromBlocks_iff, isHermitian_transpose_add_self, vecMul_conjTranspose, self_mul_conjTranspose_mulVec_eq_zero, blockDiag'_conjTranspose, conjTranspose_pow, Summable.matrix_conjTranspose, IsDiag.conjTranspose, conjTranspose_intCast_smul, conjTranspose_apply, conjTranspose_multiset_sum, conjTranspose_ofNat_smul, updateCol_conjTranspose, IsHermitian.fromBlocks₁₁, conjTranspose_eq_zero, PosDef.mul_mul_conjTranspose_same, conjTranspose_neg, LDL.diag_eq_lowerInv_conj, conjTranspose_list_prod, self_mul_conjTranspose_mul_eq_zero, conjTranspose_smul_non_comm, conjTranspose_single, conjTranspose_vecMulVec, conjTranspose_transpose, conjTranspose_mul_self_eq_zero, conjTranspose_rat_smul, OrthonormalBasis.toMatrix_orthonormalBasis_self_mul_conjTranspose, conjTransposeRingEquiv_apply, conjTranspose_smul, OrthonormalBasis.toMatrix_orthonormalBasis_conjTranspose_mul_self, vecMul_self_mul_conjTranspose_eq_zero, isHermitian_mul_mul_conjTranspose, updateRow_conjTranspose, l2_opNNNorm_conjTranspose_mul_self, isHermitian_transpose_mul_self, inner_matrix_row_row, conjTranspose_mul_self_mul_eq_zero, conjTranspose_conjTranspose, conjTranspose_intCast, conjTranspose_smul_self, conjTranspose_add, conjTranspose_map, conjTranspose_kronecker', LinearMap.toMatrix_adjoint, conjTranspose_circulant, self_mul_conjTranspose_eq_zero, conjTranspose_mul, conjTranspose_injective, posSemidef_conjTranspose_iff, PosDef.mul_conjTranspose_self, frobenius_nnnorm_conjTranspose, conjTranspose_ofNat, rank_conjTranspose_mul_self, PosDef.conjTranspose, diag_conjTranspose, blockDiag_conjTranspose, conjTranspose_replicateCol, blockDiagonal'_conjTranspose, mul_self_mul_conjTranspose_eq_zero, inner_matrix_col_col, conjTranspose_invOf, CStarMatrix.inner_toCLM_conjTranspose_right, mul_conjTranspose_mul_self_eq_zero, conjTranspose_nsmul, star_mulVec, conjTranspose_reindex
conjTransposeAddEquiv πŸ“–CompOp
3 mathmath: conjTransposeLinearEquiv_apply, conjTransposeAddEquiv_apply, conjTransposeAddEquiv_symm
conjTransposeLinearEquiv πŸ“–CompOp
2 mathmath: conjTransposeLinearEquiv_apply, conjTransposeLinearEquiv_symm
conjTransposeRingEquiv πŸ“–CompOp
2 mathmath: conjTransposeRingEquiv_symm_apply, conjTransposeRingEquiv_apply
instInvolutiveStar πŸ“–CompOpβ€”
instStar πŸ“–CompOp
54 mathmath: l2_opNorm_toEuclideanCLM, kroneckerTMulStarAlgEquiv_symm_apply, star_eq_conjTranspose, IsHermitian.isClosedEmbedding_cfcAux, IsHermitian.det_abs, cstar_nnnorm_def, IsHermitian.cfc_eq, instContinuousStarMatrix, PosSemidef.sqrt_eq_zero_iff, IsHermitian.isSelfAdjoint, LinearMap.toMatrixOrthonormal_reindex, IsUnit.posSemidef_star_right_conjugate_iff, LinearMap.toMatrixOrthonormal_apply_apply, toAlgEquiv_kroneckerStarAlgEquiv, PosSemidef.det_sqrt, toAlgEquiv_kroneckerTMulStarAlgEquiv, mem_unitaryGroup_iff, IsHermitian.charpoly_cfc_eq, PosSemidef.posSemidef_sqrt, toEuclideanCLM_toLp, PosSemidef.sqrt_eq_one_iff, PosSemidef.sqrt_sq, star_apply, PosSemidef.eq_sqrt_iff_sq_eq, isHermitian_iff_isSelfAdjoint, LinearMap.toMatrixOrthonormal_symm_apply, IsHermitian.cfcAux_apply, ofLp_toEuclideanCLM, kroneckerTMulStarAlgEquiv_apply, instStarModule, UnitaryGroup.inv_val, star_mul, PosSemidef.isUnit_sqrt_iff, coe_toEuclideanCLM_eq_toEuclideanLin, LinearMap.toMatrixOrthonormal_apply, PosSemidef.sq_sqrt, PosSemidef.inv_sqrt, CStarMatrix.ofMatrix_eq_ofMatrixStarAlgEquiv, IsHermitian.cfcAux_id, specialUnitaryGroup.coe_star, mem_unitaryGroup_iff', IsUnit.posSemidef_star_left_conjugate_iff, PosSemidef.sqrt_mul_self, cstar_norm_def, UnitaryGroup.star_mul_self, kroneckerStarAlgEquiv_apply, IsUnit.posDef_star_left_conjugate_iff, PosDef.posDef_sqrt, IsHermitian.star_eigenvectorUnitary_mulVec, IsHermitian.instContinuousFunctionalCalculus, kroneckerStarAlgEquiv_symm_apply, PosSemidef.sqrt_eq_iff_eq_sq, UnitaryGroup.inv_apply, IsUnit.posDef_star_right_conjugate_iff
instStarAddMonoid πŸ“–CompOp
8 mathmath: kroneckerTMulStarAlgEquiv_symm_apply, frobenius_normedStarGroup, toAlgEquiv_kroneckerStarAlgEquiv, toAlgEquiv_kroneckerTMulStarAlgEquiv, kroneckerTMulStarAlgEquiv_apply, kroneckerStarAlgEquiv_apply, instNormedStarGroup, kroneckerStarAlgEquiv_symm_apply
instStarRing πŸ“–CompOp
24 mathmath: IsHermitian.det_abs, IsHermitian.cfc_eq, PosSemidef.sqrt_eq_zero_iff, PosSemidef.det_sqrt, IsHermitian.charpoly_cfc_eq, PosSemidef.posSemidef_sqrt, PosSemidef.sqrt_eq_one_iff, PosSemidef.sqrt_sq, PosSemidef.eq_sqrt_iff_sq_eq, IsHermitian.cfcAux_apply, UnitaryGroup.inv_val, PosSemidef.isUnit_sqrt_iff, IsHermitian.spectral_theorem, PosSemidef.sq_sqrt, PosSemidef.inv_sqrt, IsHermitian.star_mul_self_mul_eq_diagonal, instCStarRing, PosSemidef.sqrt_mul_self, instStarOrderedRing, IsHermitian.conjStarAlgAut_star_eigenvectorUnitary, PosDef.posDef_sqrt, IsHermitian.instContinuousFunctionalCalculus, PosSemidef.sqrt_eq_iff_eq_sq, UnitaryGroup.inv_apply
Β«term_α΄΄Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
conjTransposeAddEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
Matrix
add
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
EquivLike.toFunLike
AddEquiv.instEquivLike
conjTransposeAddEquiv
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
β€”β€”
conjTransposeAddEquiv_symm πŸ“–mathematicalβ€”AddEquiv.symm
Matrix
add
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
conjTransposeAddEquiv
β€”β€”
conjTransposeLinearEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
starRingEnd
RingHomInvPair.instStarRingEnd
Matrix
addCommMonoid
module
EquivLike.toFunLike
LinearEquiv.instEquivLike
conjTransposeLinearEquiv
Equiv.toFun
AddEquiv.toEquiv
add
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddCommMonoid.toAddMonoid
conjTransposeAddEquiv
β€”RingHomInvPair.instStarRingEnd
conjTransposeLinearEquiv_symm πŸ“–mathematicalβ€”LinearEquiv.symm
Matrix
CommSemiring.toSemiring
addCommMonoid
module
starRingEnd
RingHomInvPair.instStarRingEnd
conjTransposeLinearEquiv
β€”RingHomInvPair.instStarRingEnd
conjTransposeRingEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
Matrix
MulOpposite
instMulOfFintypeOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
MulOpposite.instMul
add
Distrib.toAdd
MulOpposite.instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
conjTransposeRingEquiv
MulOpposite.op
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”β€”
conjTransposeRingEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
MulOpposite
Matrix
MulOpposite.instMul
instMulOfFintypeOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
MulOpposite.instAdd
add
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
conjTransposeRingEquiv
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
MulOpposite.unop
β€”β€”
conjTranspose_add πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
Matrix
add
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
β€”ext
StarAddMonoid.star_add
conjTranspose_apply πŸ“–mathematicalβ€”conjTranspose
Star.star
β€”β€”
conjTranspose_conjTranspose πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
β€”ext
star_star
conjTranspose_eq_diagonal πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
diagonal
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Star.star
Pi.instStarForall
β€”Function.Involutive.eq_iff
conjTranspose_conjTranspose
diagonal_conjTranspose
conjTranspose_eq_intCast πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
StarRing.toStarAddMonoid
Matrix
instIntCastOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”Function.Involutive.eq_iff
conjTranspose_conjTranspose
conjTranspose_intCast
conjTranspose_eq_natCast πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
Matrix
instNatCastOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Function.Involutive.eq_iff
conjTranspose_conjTranspose
conjTranspose_natCast
conjTranspose_eq_ofNat πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
Matrix
instOfNatAtLeastTwo
instNatCastOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”conjTranspose_eq_natCast
conjTranspose_eq_one πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
Matrix
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Function.Involutive.eq_iff
conjTranspose_conjTranspose
conjTranspose_one
conjTranspose_eq_transpose_of_trivial πŸ“–mathematicalβ€”conjTranspose
transpose
β€”ext
TrivialStar.star_trivial
conjTranspose_eq_zero πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
Matrix
zero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”conjTranspose_zero
conjTranspose_inj πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
β€”conjTranspose_injective
conjTranspose_injective πŸ“–mathematicalβ€”Matrix
conjTranspose
InvolutiveStar.toStar
β€”map_injective
star_injective
transpose_injective
conjTranspose_intCast πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
StarRing.toStarAddMonoid
Matrix
instIntCastOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”transpose_intCast
map_intCast
star_zero
star_intCast
conjTranspose_intCast_smul πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Matrix
smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”ext
star_intCast_smul
conjTranspose_inv_intCast_smul πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Matrix
smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”ext
star_inv_intCast_smul
conjTranspose_inv_natCast_smul πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
Matrix
smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Module.toDistribMulAction
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”ext
star_inv_natCast_smul
conjTranspose_inv_ofNat_smul πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
Matrix
smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Module.toDistribMulAction
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”conjTranspose_inv_natCast_smul
conjTranspose_list_prod πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
Matrix
instMulOfFintypeOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”RingEquiv.unop_map_list_prod
conjTranspose_list_sum πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
Matrix
add
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
zero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”map_list_sum
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
conjTranspose_map πŸ“–mathematicalFunction.Semiconj
Star.star
map
conjTranspose
β€”ext
conjTranspose_mul πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”ext
star_sum
Finset.sum_congr
StarMul.star_mul
conjTranspose_multiset_sum πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
Multiset.sum
Matrix
addCommMonoid
Multiset.map
β€”AddMonoidHom.map_multiset_sum
conjTranspose_natCast πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
Matrix
instNatCastOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”transpose_natCast
map_natCast
star_zero
star_natCast
conjTranspose_natCast_smul πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
Matrix
smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”ext
star_natCast_smul
conjTranspose_neg πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Matrix
neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”ext
star_neg
conjTranspose_nsmul πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
Matrix
AddMonoid.toNatSMul
addMonoid
β€”ext
star_nsmul
conjTranspose_ofNat πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
Matrix
instOfNatAtLeastTwo
instNatCastOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”conjTranspose_natCast
conjTranspose_ofNat_smul πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
Matrix
smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”conjTranspose_natCast_smul
conjTranspose_one πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
Matrix
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”transpose_one
map_one
star_zero
star_one
conjTranspose_pow πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
Matrix
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”MulOpposite.op_injective
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
conjTranspose_ratCast_smul πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Matrix
smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
DivisionRing.toRatCast
β€”ext
star_ratCast_smul
conjTranspose_rat_smul πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Matrix
smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Rat.monoid
Module.toDistribMulAction
Rat.semiring
AddCommGroup.toAddCommMonoid
β€”ext
star_rat_smul
conjTranspose_reindex πŸ“–mathematicalβ€”conjTranspose
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
reindex
β€”β€”
conjTranspose_single πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Star.star
β€”transpose_single
map_single
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
conjTranspose_smul πŸ“–mathematicalβ€”conjTranspose
Matrix
smul
Star.star
β€”ext
StarModule.star_smul
conjTranspose_smul_non_comm πŸ“–mathematicalStar.star
MulOpposite
MulOpposite.op
conjTranspose
Matrix
smul
β€”ext
conjTranspose_smul_self πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarMul.toInvolutiveStar
Matrix
smul
MulOpposite
Mul.toSMulMulOpposite
MulOpposite.op
Star.star
β€”conjTranspose_smul_non_comm
StarMul.star_mul
conjTranspose_sub πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Matrix
sub
SubNegMonoid.toSub
β€”ext
star_sub
conjTranspose_submatrix πŸ“–mathematicalβ€”conjTranspose
submatrix
β€”ext
conjTranspose_sum πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
Finset.sum
Matrix
addCommMonoid
β€”map_sum
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
conjTranspose_transpose πŸ“–mathematicalβ€”transpose
conjTranspose
map
Star.star
β€”β€”
conjTranspose_vecMulVec πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarMul.toInvolutiveStar
vecMulVec
Star.star
Pi.instStarForall
β€”ext
StarMul.star_mul
conjTranspose_zero πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
Matrix
zero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”ext
star_zero
conjTranspose_zsmul πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Matrix
SubNegMonoid.toZSMul
addGroup
β€”ext
star_zsmul
diag_conjTranspose πŸ“–mathematicalβ€”diag
conjTranspose
Star.star
Pi.instStarForall
β€”β€”
diagonal_conjTranspose πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
diagonal
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Star.star
Pi.instStarForall
β€”conjTranspose.eq_1
diagonal_transpose
diagonal_map
star_zero
dotProduct_star πŸ“–mathematicalβ€”dotProduct
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Star.star
Pi.instStarForall
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”Finset.sum_congr
star_sum
StarMul.star_mul
star_star
instStarModule πŸ“–mathematicalβ€”StarModule
Matrix
instStar
smul
β€”conjTranspose_smul
mulVec_conjTranspose πŸ“–mathematicalβ€”mulVec
NonUnitalSemiring.toNonUnitalNonAssocSemiring
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
Star.star
Pi.instStarForall
vecMul
β€”star_dotProduct
star_apply πŸ“–mathematicalβ€”Star.star
Matrix
instStar
β€”β€”
star_dotProduct πŸ“–mathematicalβ€”dotProduct
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Star.star
Pi.instStarForall
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”Finset.sum_congr
star_sum
StarMul.star_mul
star_star
star_dotProduct_star πŸ“–mathematicalβ€”dotProduct
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Star.star
Pi.instStarForall
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”Finset.sum_congr
star_sum
StarMul.star_mul
star_eq_conjTranspose πŸ“–mathematicalβ€”Star.star
Matrix
instStar
conjTranspose
β€”β€”
star_mul πŸ“–mathematicalβ€”Star.star
Matrix
instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”conjTranspose_mul
star_mulVec πŸ“–mathematicalβ€”Star.star
Pi.instStarForall
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
mulVec
vecMul
conjTranspose
β€”star_dotProduct_star
star_vecMul πŸ“–mathematicalβ€”Star.star
Pi.instStarForall
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
vecMul
mulVec
conjTranspose
β€”star_dotProduct_star
transpose_conjTranspose πŸ“–mathematicalβ€”conjTranspose
transpose
map
Star.star
β€”β€”
vecMul_conjTranspose πŸ“–mathematicalβ€”vecMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
Star.star
Pi.instStarForall
mulVec
β€”dotProduct_star

---

← Back to Index