Documentation Verification Report

Basic

πŸ“ Source: Mathlib/LinearAlgebra/Matrix/Determinant/Basic.lean

Statistics

MetricCount
Definitionsdet, detMonoidHom, detRowAlternating
3
Theoremsmap_det, map_det, cast_det, abs_det_reindex, abs_det_submatrix_equiv_equiv, coe_detMonoidHom, coe_det_isEmpty, det_apply, det_apply', det_blockDiagonal, det_conjTranspose, det_diagonal, det_eq_detp_sub_detp, det_eq_elem_of_card_eq_one, det_eq_elem_of_subsingleton, det_eq_of_eq_det_one_mul, det_eq_of_eq_mul_det_one, det_eq_of_forall_col_eq_smul_add_pred, det_eq_of_forall_row_eq_smul_add_const, det_eq_of_forall_row_eq_smul_add_const_aux, det_eq_of_forall_row_eq_smul_add_pred, det_eq_of_forall_row_eq_smul_add_pred_aux, det_eq_one_of_card_eq_zero, det_eq_zero_of_column_eq_zero, det_eq_zero_of_not_linearIndependent_cols, det_eq_zero_of_not_linearIndependent_rows, det_eq_zero_of_row_eq_zero, det_fin_one, det_fin_one_of, det_fin_three, det_fin_two, det_fin_two_of, det_fin_zero, det_fromBlocks_zero₁₂, det_fromBlocks_zero₂₁, det_isEmpty, det_mul, det_mul_aux, det_mul_column, det_mul_comm, det_mul_left_comm, det_mul_right_comm, det_mul_row, det_neg, det_neg_eq_smul, det_one, det_permute, det_permute', det_pow, det_reindex, det_reindex_self, det_smul, det_smul_of_tower, det_submatrix_equiv_self, det_succ_column, det_succ_column_zero, det_succ_row, det_succ_row_zero, det_transpose, det_unique, det_units_conj, det_units_conj', det_updateCol_add, det_updateCol_add_self, det_updateCol_add_smul_self, det_updateCol_eq_zero, det_updateCol_smul, det_updateCol_smul_left, det_updateCol_sum, det_updateRow_add, det_updateRow_add_self, det_updateRow_add_smul_self, det_updateRow_eq_zero, det_updateRow_smul, det_updateRow_smul_left, det_updateRow_sum, det_updateRow_sum_aux, det_vecMulVec, det_zero, det_zero_of_column_eq, det_zero_of_row_eq, linearIndependent_cols_of_det_ne_zero, linearIndependent_rows_of_det_ne_zero, cast_det, map_det, map_det
86
Total89

AlgEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
map_det πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
instFunLike
Matrix.det
Matrix
Matrix.semiring
Matrix.instAlgebra
mapMatrix
β€”AlgHom.map_det

AlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
map_det πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
funLike
Matrix.det
Matrix
Matrix.semiring
Matrix.instAlgebra
mapMatrix
β€”RingHom.map_det

Int

Theorems

NameKindAssumesProvesValidatesDepends On
cast_det πŸ“–mathematicalβ€”AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.det
instCommRing
Matrix.map
β€”RingHom.map_det

Matrix

Definitions

NameCategoryTheorems
det πŸ“–CompOp
315 mathmath: isTotallyUnimodular_iff, det_updateCol_eq_zero, LinearMap.detAux_def'', det_apply, SpecialLinearGroup.center_equiv_rootsOfUnity'_apply, det_eq_of_forall_row_eq_smul_add_pred_aux, abs_det_reindex, ZSpan.volume_real_fundamentalDomain, SimpleGraph.det_lapMatrix_eq_zero, IsHermitian.det_abs, cramer_transpose_row_self, isUnit_det_zpow_iff, det_det, isUnit_det_of_invertible, det_permute, abs_det_submatrix_equiv_equiv, Algebra.norm_eq_matrix_det, eval_det_add_X_smul, det_updateRow_add_self, det_fin_one, Polynomial.leadingCoeff_det_X_one_add_C, ModularGroup.bottom_row_coprime, NumberField.Units.regOfFamily_eq_det, det_vandermonde, cramer_row_self, UpperHalfPlane.specialLinearGroup_apply, det_transpose, SpecialLinearGroup.scalar_eq_self_of_mem_center, det_succ_row, adjugate_fin_succ_eq_det_submatrix, ModularGroup.bottom_row_surj, det_eq_sum_mul_adjugate_row, det_le, SpecialLinearGroup.center_equiv_rootsOfUnity'_symm_apply_coe_coe, Real.smul_map_diagonal_volume_pi, det_projVandermonde, Algebra.SubmersivePresentation.map_jacobianOfHasCoeffs, isTotallyUnimodular_iff_fintype, ModularGroup.coe_apply_complex, det_updateRow_add_smul_self, IsCoprime.mulVecSL, derivative_det_one_add_X_smul, TransvectionStruct.det, det_updateRow_smul_left, det_units_conj', det_eval_matrixOfPolynomials_eq_det_vandermonde, Algebra.Norm.Transitivity.comp_det_mul_pow, det_smul, SpecialLinearGroup.coe_one, det_zero_of_column_eq, det_one_add_smul, ModularGroup.tendsto_abs_re_smul, det_kroneckerMapBilinear, SpecialLinearGroup.toLin'_symm_to_linearMap, PosSemidef.det_sqrt, Real.map_matrix_volume_pi_eq_smul_volume_pi, ModularGroup.denom_apply, IsCoprime.vecMulSL, SpecialLinearGroup.det_coe, SpecialLinearGroup.map_apply_coe, coe_detMonoidHom, det_of_lowerTriangular, isUnits_det_units, mem_specialOrthogonalGroup_iff, NumberField.Units.regulator_eq_det, det_eq_sum_mul_adjugate_col, cramer_apply, det_smul_of_tower, ModularGroup.c_eq_zero, det_updateRow_sum_aux, det_zero_of_row_eq, TransvectionStruct.det_toMatrix_prod, NumberField.Units.finrank_mul_regOfFamily_eq_det, isUnit_nonsing_inv_det_iff, ZSpan.volume_fundamentalDomain, det_reindexAlgEquiv, Algebra.SubmersivePresentation.jacobianRelations_spec, adjugate_adjugate, det_eq_elem_of_card_eq_one, det_map, det_eq_detp_sub_detp, det_eq_elem_of_subsingleton, SpecialLinearGroup.isCoprime_col, det_sum_le, ModularGroup.T_mul_apply_one, det_eq_sum_column_mul_submatrix_succAbove_succAbove_det, det_conjTranspose, det_updateCol_add, det_zero, LinearMap.det_eq_det_toMatrix_of_finset, inv_def, det_permutation, ModularGroup.coe_T_inv, ModularGroup.T_inv_mul_apply_one, FixedDetMatrices.reps_entries_le_m', LinearMap.det_toLin', AlgHom.map_det, det_kronecker, Int.cast_det, isUnit_det_J, Continuous.matrix_det, det_updateRow_sum, SpecialLinearGroup.isCoprime_row, Polynomial.coeff_det_X_add_C_card, det_eq_prod_roots_charpoly_of_splits, adjugate_apply, det_transvection_of_ne, ModularGroup.T_pow_mul_apply_one, ModularGroup.exists_row_one_eq_and_min_re, det_one_add_X_smul, AffineBasis.det_smul_coords_eq_cramer_coords, det_vandermonde_add, det_reindex, det_one_sub_mul_comm, UnitaryGroup.det_isUnit, SpecialLinearGroup.scalar_eq_coe_self_center, Algebra.discr_of_matrix_mulVec, IsCoprime.exists_SL2_row, SpecialLinearGroup.ext_iff, det_fromBlocks₁₁, exteriorPower.ΞΉMultiDual_apply_ΞΉMulti, twoBlockTriangular_det, Rat.cast_det, twoBlockTriangular_det', RingEquiv.map_det, det_diagonal, exteriorPower.pairingDual_ΞΉMulti_ΞΉMulti, det_fromBlocks_one₁₁, QuadraticMap.discr_comp, discr_of_card_eq_two, det_eq_of_forall_row_eq_smul_add_const_aux, Algebra.discr_of_matrix_vecMul, EisensteinSeries.vecMul_SL2_mem_gammaSet, ModularForm.slash_action_eq'_iff, LinearMap.detAux_def', det_eq_one_of_card_eq_zero, exists_mulVec_eq_zero_iff, SpecialLinearGroup.toLin_equiv.symm_toLinearMap_eq, det_conj', SpecialLinearGroup.SL2_inv_expl, adjugate_adjugate', mem_specialUnitaryGroup_iff, det_toBlock, NumberField.discr_eq_basisMatrix_det_sq, det_of_mem_unitary, IsIntegral.det, charpoly_fin_two, NumberField.mixedEmbedding.det_matrixToStdBasis, det_succ_column, SpecialLinearGroup.coe_inv, isUnit_iff_isUnit_det, disc_fin_two, IsCoprime.exists_SL2_col, IsHermitian.det_eq_prod_eigenvalues, Algebra.Norm.Transitivity.eval_zero_comp_det, det_mul, superFactorial_dvd_vandermonde_det, det_fromBlocks_oneβ‚‚β‚‚, SpecialLinearGroup.coe_pow, det_adjugate, submatrix_succAbove_det_eq_negOnePow_submatrix_succAbove_det', eval_det, det_succ_column_zero, NumberField.Units.abs_det_eq_abs_det, LinearEquiv.isUnit_det, PosSemidef.det_nonneg, BlockTriangular.det, det_neg, RingHom.map_det, CartanMatrix.Fβ‚„_det, det_blockDiagonal, det_eq_zero_of_not_linearIndependent_cols, exteriorPower.alternatingMapToDual_apply_ΞΉMulti, det_updateRow_eq_zero, UpperHalfPlane.coe_specialLinearGroup_apply, exists_vecMul_eq_zero_iff, triple_product_eq_det, det_smul_adjugate_adjugate, det_reindex_self, GeneralLinearGroup.val_inv_det_apply, CongruenceSubgroup.Gamma1_mem, SpecialLinearGroup.coe_transpose, det_eq_of_forall_row_eq_smul_add_const, eval_charpoly, SpecialLinearGroup.coe_GL_coe_matrix, det_fromBlocksβ‚‚β‚‚, det_conj, SpecialLinearGroup.eq_scalar_center_equiv_rootsOfUnity, det_updateCol_smul, det_updateCol_sum, det_eq_sum_row_mul_submatrix_succAbove_succAbove_det, det_fromBlocks_zero₁₂, Algebra.discr_def, SpecialLinearGroup.toLin'_to_linearMap, det_mul_add_one_comm, Algebra.discr_eq_det_embeddingsMatrixReindex_pow_two, SpecialLinearGroup.SL2_inv_expl_det, det_comm', ModularGroup.tendsto_lcRow0, unitOfDetInvertible_eq_nonsingInvUnit, det_mul_column, coeff_det_one_add_X_smul_one, Algebra.SubmersivePresentation.exists_sum_eq_Οƒ_jacobian_mul_Οƒ_jacobian_inv_sub_one, det_reindexLinearEquiv_self, mulVec_cramer, ModularGroup.abs_c_le_one, det_permute', SL_reduction_mod_hom_val, Polynomial.natDegree_det_X_add_C_le, AlgEquiv.map_det, det_vandermonde_id_eq_superFactorial, submatrix_succAbove_det_eq_negOnePow_submatrix_succAbove_det, det_updateCol_add_smul_self, det_vandermonde_sub, CongruenceSubgroup.Gamma1_to_Gamma0_mem, FixedDetMatrices.smul_def, isUnit_det_of_left_inverse, invertibleEquivDetInvertible_apply, det_eq_prod_roots_charpoly, det_matrixOfPolynomials, equiv_block_det, det_fromBlocks_zero₂₁, det_one, charpoly_inv, SpecialLinearGroup.toLin_equiv.toLinearMap_eq, EisensteinSeries.vecMulSL_gcd, det_isEmpty, SpecialLinearGroup.coe_GLPos_coe_GL_coe_matrix, det_mul_row, FixedDetMatrices.ext_iff, det_one_add_replicateCol_mul_replicateRow, Algebra.Norm.Transitivity.eval_zero_det_det, det_fin_one_of, det_mul_comm, ModularGroup.coe_T, J_det_mul_J_det, det_updateRow_smul, det_toSquareBlock_id, det_fin_two_of, det_neg_eq_smul, disc_of_card_eq_two, SpecialLinearGroup.coe_neg, det_sum_smul_le, det_mul_left_comm, det_kroneckerTMul, det_of_upperTriangular, SpecialLinearGroup.coe_matrix_coe, FixedDetMatrices.smul_coe, SpecialLinearGroup.mapGL_coe_matrix, coe_det_isEmpty, det_updateCol_add_self, det_submatrix_equiv_self, det_eq_zero_of_column_eq_zero, det_vecMulVec, det_units_conj, LinearMap.det_toMatrix', det_fin_zero, det_eq_zero_of_row_eq_zero, EisensteinSeries.eisSummand_SL2_apply, CartanMatrix.Gβ‚‚_det, det_fin_two, det_unique, det_apply', ModularGroup.det_coe, det_eq_of_forall_row_eq_smul_add_pred, SpecialLinearGroup.toLin'_symm_apply, ModularGroup.coe_T_zpow, invOf_eq, NumberField.Units.finrank_mul_regulator_eq_det, det_vandermonde_eq_zero_iff, det_fin_three, invertibleEquivDetInvertible_symm_apply, cramer_transpose_apply, det_succ_row_zero, det_updateCol_smul_left, NumberField.Units.regulator_eq_det', ModularGroup.coe_S, EisensteinSeries.eisensteinSeries_slash_apply, BlockTriangular.det_fintype, det_mul_right_comm, LinearMap.det_toMatrix, LinearMap.det_toLin, CongruenceSubgroup.Gamma_mem, ModularGroup.S_mul_S_eq, det_updateRow_add, SpecialLinearGroup.coe_mul, adjugate_mul, det_eq_of_forall_col_eq_smul_add_pred, derivative_det_one_add_X_smul_aux, PosDef.det_pos, NumberField.Units.regOfFamily_eq_det', det_conj_of_mul_eq_one, SymplecticGroup.symplectic_det, det_eq_sign_charpoly_coeff, Module.Basis.det_apply, det_pow, det_eq_zero_of_not_linearIndependent_rows, isUnit_det_of_right_inverse, Algebra.Norm.Transitivity.det_mul_corner_pow, Algebra.PreSubmersivePresentation.jacobian_eq_jacobiMatrix_det, det_one_add_mul_comm, det_nonsing_inv, det_invOf, LinearMap.det_toMatrix_eq_det_toMatrix, SpecialLinearGroup.toLin'_apply, Polynomial.coeff_det_X_add_C_zero, SpecialLinearGroup.mem_center_iff, Pi.basisFun_det_apply, det_comm, charpoly_of_card_eq_two, ZLattice.covolume_eq_det, mul_adjugate, CongruenceSubgroup.Gamma0_mem, discr_fin_two, GeneralLinearGroup.val_det_apply
detMonoidHom πŸ“–CompOp
2 mathmath: LinearMap.detAux_def, coe_detMonoidHom
detRowAlternating πŸ“–CompOp
1 mathmath: Pi.basisFun_det

Theorems

NameKindAssumesProvesValidatesDepends On
abs_det_reindex πŸ“–mathematicalβ€”abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
det
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
reindex
β€”abs_det_submatrix_equiv_equiv
abs_det_submatrix_equiv_equiv πŸ“–mathematicalβ€”abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
det
submatrix
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”Equiv.ext
Equiv.symm_apply_apply
det_submatrix_equiv_self
det_permute'
abs_mul
IsStrictOrderedRing.toIsOrderedRing
abs_unit_intCast
one_mul
coe_detMonoidHom πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Matrix
instMulOneOfFintypeOfDecidableEqOfAddCommMonoid
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MonoidHom.instFunLike
detMonoidHom
det
β€”β€”
coe_det_isEmpty πŸ“–mathematicalβ€”det
Matrix
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”det_isEmpty
det_apply πŸ“–mathematicalβ€”det
Finset.sum
Equiv.Perm
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
Equiv.instFintype
Units
Int.instMonoid
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
Units.instMulOneClass
MonoidHom.instFunLike
Equiv.Perm.sign
Finset.prod
CommRing.toCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
β€”MultilinearMap.alternatization_apply
det_apply' πŸ“–mathematicalβ€”det
Finset.sum
Equiv.Perm
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
Equiv.instFintype
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
Units.val
Int.instMonoid
DFunLike.coe
MonoidHom
Units
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
Units.instMulOneClass
MonoidHom.instFunLike
Equiv.Perm.sign
Finset.prod
CommRing.toCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
β€”det_apply
Finset.sum_congr
zsmul_eq_mul
det_blockDiagonal πŸ“–mathematicalβ€”det
instFintypeProd
blockDiagonal
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.prod
CommRing.toCommMonoid
Finset.univ
β€”det_apply'
Finset.prod_congr
Finset.prod_sum
Finset.mem_univ
Finset.sum_congr
Finset.prod_attach_univ
Finset.univ_pi_univ
Finset.mem_filter
Finset.sum_subset
Finset.subset_univ
Finset.prod_eq_zero
blockDiagonal_apply_ne
MulZeroClass.mul_zero
Finset.sum_bij
Equiv.Perm.ext
Equiv.apply_symm_apply
Equiv.symm_apply_apply
Finset.prod_mul_distrib
Finset.univ_product_univ
Finset.prod_product_right
Equiv.Perm.sign_prodCongrLeft
Units.coe_prod
Int.cast_prod
blockDiagonal_apply_eq
det_conjTranspose πŸ“–mathematicalβ€”det
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
StarRing.toStarAddMonoid
Star.star
β€”RingHom.map_det
det_transpose
det_diagonal πŸ“–mathematicalβ€”det
diagonal
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.prod
CommRing.toCommMonoid
Finset.univ
β€”det_apply'
Finset.sum_eq_single
Equiv.ext
Finset.prod_eq_zero
Finset.mem_univ
MulZeroClass.mul_zero
Equiv.Perm.sign_one
Int.cast_one
Finset.prod_congr
diagonal_apply_eq
one_mul
instIsEmptyFalse
det_eq_detp_sub_detp πŸ“–mathematicalβ€”det
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
detp
CommRing.toCommSemiring
Units
Int.instMonoid
Units.instOne
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
β€”det_apply
Equiv.sum_comp
Equiv.Perm.ofSign_disjoint
Equiv.Perm.ofSign_disjUnion
Finset.sum_disjUnion
Finset.sum_congr
Finset.prod_congr
Equiv.Perm.sign_inv
sub_eq_add_neg
Equiv.Perm.mem_ofSign
Equiv.prod_comp
Equiv.symm_apply_apply
one_smul
Units.neg_smul
det_eq_elem_of_card_eq_one πŸ“–mathematicalFintype.carddetβ€”det_eq_elem_of_subsingleton
Fintype.card_le_one_iff_subsingleton
Eq.le
det_eq_elem_of_subsingleton πŸ“–mathematicalβ€”detβ€”Lean.Meta.FastSubsingleton.elim
det_unique
det_eq_of_eq_det_one_mul πŸ“–β€”det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”β€”det_mul
one_mul
det_eq_of_eq_mul_det_one πŸ“–β€”det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”β€”det_mul
mul_one
det_eq_of_forall_col_eq_smul_add_pred πŸ“–mathematicalDistrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
det
Fin.fintype
β€”det_transpose
det_eq_of_forall_row_eq_smul_add_pred
det_eq_of_forall_row_eq_smul_add_const πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
detβ€”det_eq_of_forall_row_eq_smul_add_const_aux
not_imp_comm
Finset.mem_erase
Finset.mem_univ
Finset.notMem_erase
det_eq_of_forall_row_eq_smul_add_const_aux πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset
Finset.instMembership
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
detβ€”Finset.induction_on
ext
MulZeroClass.zero_mul
add_zero
Function.update_apply
Finset.mem_insert
Finset.mem_insert_of_mem
updateRow_apply
updateRow_ne
Finset.mem_insert_self
det_updateRow_add_smul_self
det_eq_of_forall_row_eq_smul_add_pred πŸ“–mathematicalDistrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
det
Fin.fintype
β€”det_eq_of_forall_row_eq_smul_add_pred_aux
not_lt_of_ge
det_eq_of_forall_row_eq_smul_add_pred_aux πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
det
Fin.fintype
β€”ext
MulZeroClass.zero_mul
add_zero
updateRow.congr_simp
updateRow_self
updateRow_ne
LT.lt.ne
det_updateRow_add_smul_self
Function.update_apply
lt_of_le_of_ne
Fin.succ_injective
ne_of_lt
not_lt
det_eq_one_of_card_eq_zero πŸ“–mathematicalFintype.carddet
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”det_isEmpty
Fintype.card_eq_zero_iff
det_eq_zero_of_column_eq_zero πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
detβ€”det_transpose
det_eq_zero_of_row_eq_zero
det_eq_zero_of_not_linearIndependent_cols πŸ“–mathematicalLinearIndependent
transpose
CommSemiring.toSemiring
CommRing.toCommSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
det
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
linearIndependent_cols_of_det_ne_zero
det_eq_zero_of_not_linearIndependent_rows πŸ“–mathematicalLinearIndependent
CommSemiring.toSemiring
CommRing.toCommSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
det
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”AlternatingMap.map_linearDependent
instIsTorsionFree
det_eq_zero_of_row_eq_zero πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
detβ€”AlternatingMap.map_coord_zero
det_fin_one πŸ“–mathematicalβ€”det
Fin.fintype
β€”det_unique
det_fin_one_of πŸ“–mathematicalβ€”det
Fin.fintype
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
of
vecCons
vecEmpty
β€”det_fin_one
det_fin_three πŸ“–mathematicalβ€”det
Fin.fintype
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
β€”det_succ_row_zero
Finset.sum_congr
det.congr_simp
submatrix_submatrix
det_unique
Fin.sum_univ_succ
Finset.univ_unique
Fin.succ_succAbove_zero
Finset.sum_singleton
Fin.succ_succAbove_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Meta.NormNum.isInt_pow
Mathlib.Meta.NormNum.intPow_negOfNat_bit0
Mathlib.Meta.NormNum.one_natPow
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
det_fin_two πŸ“–mathematicalβ€”det
Fin.fintype
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”det_succ_row_zero
Finset.sum_congr
det_unique
Fin.sum_univ_succ
Finset.univ_unique
Fin.succ_succAbove_zero
Finset.sum_singleton
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
det_fin_two_of πŸ“–mathematicalβ€”det
Fin.fintype
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
of
vecCons
vecEmpty
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”det_fin_two
det_fin_zero πŸ“–mathematicalβ€”det
Fin.fintype
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”det_isEmpty
Fin.isEmpty'
det_fromBlocks_zero₁₂ πŸ“–mathematicalβ€”det
instFintypeSum
fromBlocks
Matrix
zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”det_transpose
fromBlocks_transpose
transpose_zero
det_fromBlocks_zero₂₁
det_fromBlocks_zero₂₁ πŸ“–mathematicalβ€”det
instFintypeSum
fromBlocks
Matrix
zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”det_apply'
Finset.sum_mul_sum
Finset.sum_nbij
Set.toFinset_range
DFunLike.congr_fun
Equiv.Perm.ext
Set.mem_toFinset
Finset.mem_coe
Finset.coe_univ
Finset.prod_congr
Fintype.prod_sum_type
mul_mul_mul_comm
Equiv.Perm.sign_sumCongr
Units.val_mul
Int.cast_mul
Finset.sum_subset
Finset.subset_univ
Equiv.Perm.mem_sumCongrHom_range_of_perm_mapsTo_inl
Finite.of_fintype
Finset.prod_eq_zero
Finset.mem_univ
fromBlocks_apply₂₁
zero_apply
MulZeroClass.mul_zero
det_isEmpty πŸ“–mathematicalβ€”det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”det_apply
Finset.sum_congr
Finset.univ_unique
IsEmpty.instSubsingleton
Finset.prod_congr
Finset.univ_eq_empty
Finset.sum_singleton
Equiv.Perm.sign_one
one_smul
det_mul πŸ“–mathematicalβ€”det
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”det_apply'
Finset.sum_congr
Finset.prod_congr
Finset.prod_univ_sum
Finset.mul_sum
Finset.sum_comm
Finset.sum_subset
Finset.filter_subset
det_mul_aux
Finset.sum_bij
Finset.mem_filter
Finset.mem_univ
Function.Bijective.surjective
Function.leftInverse_surjInv
Equiv.bijective
Equiv.coe_fn_injective
mul_comm
Finset.prod_mul_distrib
mul_assoc
mul_left_comm
Fintype.sum_equiv
Equiv.prod_comp
Equiv.apply_symm_apply
Equiv.Perm.sign_mul
Int.cast_mul
inv_mul_cancel_right
det_mul_aux πŸ“–mathematicalFunction.BijectiveFinset.sum
Equiv.Perm
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
Equiv.instFintype
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
Units.val
Int.instMonoid
DFunLike.coe
MonoidHom
Units
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
Units.instMulOneClass
MonoidHom.instFunLike
Equiv.Perm.sign
Finset.prod
CommRing.toCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Mathlib.Tactic.Push.not_forall_eq
Function.Injective.eq_1
Finite.injective_iff_bijective
Finite.of_fintype
Finset.sum_involution
Fintype.prod_equiv
Equiv.swap_apply_self
Equiv.apply_swap_eq_self
Finset.prod_mul_distrib
Finset.prod_congr
Equiv.Perm.sign_mul
Equiv.Perm.sign_swap
mul_neg
mul_one
Int.cast_neg
neg_mul
add_neg_cancel
Equiv.mul_swap_eq_iff
Finset.mem_univ
Equiv.mul_swap_involutive
det_mul_column πŸ“–mathematicalβ€”det
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
of
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.prod
CommRing.toCommMonoid
Finset.univ
β€”MultilinearMap.map_smul_univ
det_mul_comm πŸ“–mathematicalβ€”det
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”det_mul
mul_comm
det_mul_left_comm πŸ“–mathematicalβ€”det
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”mul_assoc
det_mul
det_mul_comm
det_mul_right_comm πŸ“–mathematicalβ€”det
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”mul_assoc
det_mul
det_mul_comm
det_mul_row πŸ“–mathematicalβ€”det
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
of
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.prod
CommRing.toCommMonoid
Finset.univ
β€”ext
mul_diagonal
mul_comm
det_mul
det_diagonal
det_neg πŸ“–mathematicalβ€”det
Matrix
neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Fintype.card
β€”det_smul
neg_one_smul
det_neg_eq_smul πŸ“–mathematicalβ€”det
Matrix
neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
Units
Int.instMonoid
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Monoid.toNatPow
Units.instMonoid
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
Units.instOne
Fintype.card
β€”det_smul_of_tower
Units.instIsScalarTower
IsScalarTower.right
Units.smulCommClass_left
Algebra.to_smulCommClass
Units.neg_smul
one_smul
det_one πŸ“–mathematicalβ€”det
Matrix
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”diagonal_one
det_diagonal
Finset.prod_const_one
det_permute πŸ“–mathematicalβ€”det
submatrix
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
Units.val
Int.instMonoid
MonoidHom
Units
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
Units.instMulOneClass
MonoidHom.instFunLike
Equiv.Perm.sign
β€”AlternatingMap.map_perm
zsmul_eq_mul
det_permute' πŸ“–mathematicalβ€”det
submatrix
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
Units.val
Int.instMonoid
MonoidHom
Units
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
Units.instMulOneClass
MonoidHom.instFunLike
Equiv.Perm.sign
β€”det_transpose
transpose_submatrix
det_permute
det_pow πŸ“–mathematicalβ€”det
Matrix
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”MonoidHom.map_pow
det_reindex πŸ“–mathematicalβ€”det
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
reindex
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
Units.val
Int.instMonoid
MonoidHom
Equiv.Perm
Units
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
Units.instMulOneClass
MonoidHom.instFunLike
Equiv.Perm.sign
Equiv.trans
Equiv.symm
β€”ext
Equiv.apply_symm_apply
det_reindex_self
det_permute
det_reindex_self πŸ“–mathematicalβ€”det
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
reindex
β€”det_submatrix_equiv_self
det_smul πŸ“–mathematicalβ€”det
Matrix
smul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Fintype.card
β€”smul_eq_diagonal_mul
det_mul
det_diagonal
Finset.prod_const
det_smul_of_tower πŸ“–mathematicalβ€”det
Matrix
smul
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toNatPow
Fintype.card
β€”smul_one_smul
isScalarTower
det_smul
smul_pow
one_pow
smul_mul_assoc
one_mul
det_submatrix_equiv_self πŸ“–mathematicalβ€”det
submatrix
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”det_apply'
Fintype.sum_equiv
Equiv.Perm.sign_permCongr
Fintype.prod_equiv
Equiv.permCongr_apply
Equiv.symm_apply_apply
submatrix_apply
det_succ_column πŸ“–mathematicalβ€”det
Fin.fintype
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
submatrix
Fin.succAbove
β€”det_transpose
det_succ_row
Finset.sum_congr
add_comm
transpose_apply
transpose_submatrix
transpose_transpose
det_succ_column_zero πŸ“–mathematicalβ€”det
Fin.fintype
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
submatrix
Fin.succAbove
β€”det_apply
Finset.univ_perm_fin_succ
Finset.univ_product_univ
Finset.sum_map
Finset.sum_congr
Finset.prod_congr
Finset.sum_product
Equiv.Perm.decomposeFin.symm_sign
one_mul
Fin.prod_univ_succ
Equiv.Perm.decomposeFin_symm_apply_zero
Equiv.Perm.decomposeFin_symm_apply_succ
Equiv.swap_self
pow_zero
Finset.mul_sum
mul_smul_comm
Units.smulCommClass_left
Algebra.to_smulCommClass
Fin.sign_cycleRange
Int.cast_pow
Int.cast_neg
Int.cast_one
pow_succ'
mul_assoc
mul_left_comm
det_permute
Fin.succAbove_cycleRange
neg_mul
neg_smul
zsmul_eq_mul
det_succ_row πŸ“–mathematicalβ€”det
Fin.fintype
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
submatrix
Fin.succAbove
β€”Finset.sum_congr
pow_add
mul_assoc
Int.units_mul_self
Int.cast_one
one_mul
Int.cast_mul
Int.cast_pow
Int.cast_neg
Equiv.Perm.sign_inv
Fin.sign_cycleRange
det_permute
det_succ_row_zero
submatrix_apply
submatrix_submatrix
Equiv.Perm.inv_def
Fin.cycleRange_symm_zero
ext
Fin.cycleRange_symm_succ
det_succ_row_zero πŸ“–mathematicalβ€”det
Fin.fintype
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
submatrix
Fin.succAbove
β€”det_transpose
det_succ_column_zero
Finset.sum_congr
det.congr_simp
transpose_submatrix
transpose_transpose
det_transpose πŸ“–mathematicalβ€”det
transpose
β€”det_apply'
Fintype.sum_bijective
Function.Involutive.bijective
inv_involutive
Equiv.Perm.sign_inv
Fintype.prod_equiv
Equiv.symm_apply_apply
det_unique πŸ“–mathematicalβ€”det
Unique.instInhabited
β€”det_apply
Finset.sum_congr
Finset.univ_unique
Unique.instSubsingleton
Finset.prod_congr
Finset.prod_singleton
Finset.sum_singleton
Equiv.Perm.sign_one
one_smul
det_units_conj πŸ“–mathematicalβ€”det
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Units
Units.instInv
β€”det_mul_right_comm
Units.mul_inv
one_mul
det_units_conj' πŸ“–mathematicalβ€”det
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Units
Units.instInv
β€”det_units_conj
det_updateCol_add πŸ“–mathematicalβ€”det
updateCol
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”det_transpose
updateRow_transpose
det_updateRow_add
det.congr_simp
det_updateCol_add_self πŸ“–mathematicalβ€”det
updateCol
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”det_transpose
updateRow_transpose
det_updateRow_add_self
det_updateCol_add_smul_self πŸ“–mathematicalβ€”det
updateCol
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”det_transpose
updateRow_transpose
det_updateRow_add_smul_self
det_updateCol_eq_zero πŸ“–mathematicalβ€”det
updateCol
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”det_zero_of_column_eq
updateCol_ne
updateCol_self
det_updateCol_smul πŸ“–mathematicalβ€”det
updateCol
Function.hasSMul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”det_transpose
updateRow_transpose
det_updateRow_smul
det.congr_simp
det_updateCol_smul_left πŸ“–mathematicalβ€”det
updateCol
Matrix
smul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Fintype.card
β€”det_transpose
updateRow_transpose
transpose_smul
det_updateRow_smul_left
det.congr_simp
det_updateCol_sum πŸ“–mathematicalβ€”det
updateCol
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”det_transpose
updateRow_transpose
Finset.sum_congr
Finset.sum_apply
det_updateRow_sum
det_updateRow_add πŸ“–mathematicalβ€”det
updateRow
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”AlternatingMap.map_update_add
det_updateRow_add_self πŸ“–mathematicalβ€”det
updateRow
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”det_updateRow_add
det.congr_simp
updateRow_eq_self
det_zero_of_row_eq
updateRow_self
updateRow_ne
add_zero
det_updateRow_add_smul_self πŸ“–mathematicalβ€”det
updateRow
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Function.hasSMul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”det_updateRow_add
det.congr_simp
updateRow_eq_self
det_updateRow_smul
det_zero_of_row_eq
updateRow_self
updateRow_ne
MulZeroClass.mul_zero
add_zero
det_updateRow_eq_zero πŸ“–mathematicalβ€”det
updateRow
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”det_zero_of_row_eq
updateRow_ne
updateRow_self
det_updateRow_smul πŸ“–mathematicalβ€”det
updateRow
Function.hasSMul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”AlternatingMap.map_update_smul
det_updateRow_smul_left πŸ“–mathematicalβ€”det
updateRow
Matrix
smul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Fintype.card
β€”MultilinearMap.map_update_smul_left
det_updateRow_sum πŸ“–mathematicalβ€”det
updateRow
Finset.sum
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
Function.hasSMul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”Finset.add_sum_erase
Finset.mem_univ
det_updateRow_sum_aux
Finset.notMem_erase
det_updateRow_sum_aux πŸ“–mathematicalFinset
Finset.instMembership
det
updateRow
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Function.hasSMul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Finset.sum
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”Finset.induction_on
Finset.sum_empty
add_zero
smul_eq_mul
det_updateRow_smul
updateRow_eq_self
Finset.mem_insert_self
Finset.sum_insert
add_comm
add_assoc
det_updateRow_add
det_updateRow_eq_zero
MulZeroClass.mul_zero
Finset.mem_insert_of_mem
det_vecMulVec πŸ“–mathematicalβ€”det
vecMulVec
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”exists_pair_ne
AlternatingMap.map_eq_zero_of_eq
updateRow_ne
updateRow_self
updateRow_comm
updateRow_idem
update_vecMulVec
Function.update_eq_self
det_updateRow_smul
updateRow_eq_self
MulZeroClass.mul_zero
det_zero πŸ“–mathematicalβ€”det
Matrix
zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”AlternatingMap.map_zero
det_zero_of_column_eq πŸ“–mathematicalβ€”det
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”det_transpose
det_zero_of_row_eq
det_zero_of_row_eq πŸ“–mathematicalβ€”det
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”AlternatingMap.map_eq_zero_of_eq
linearIndependent_cols_of_det_ne_zero πŸ“–mathematicalβ€”LinearIndependent
col
CommSemiring.toSemiring
CommRing.toCommSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
β€”linearIndependent_rows_of_det_ne_zero
det_transpose
linearIndependent_rows_of_det_ne_zero πŸ“–mathematicalβ€”LinearIndependent
CommSemiring.toSemiring
CommRing.toCommSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
det_eq_zero_of_not_linearIndependent_rows

Rat

Theorems

NameKindAssumesProvesValidatesDepends On
cast_det πŸ“–mathematicalβ€”DivisionRing.toRatCast
Field.toDivisionRing
Matrix.det
commRing
Field.toCommRing
Matrix.map
β€”RingHom.map_det

RingEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
map_det πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
Matrix.det
Matrix
Matrix.instMulOfFintypeOfAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Matrix.add
mapMatrix
β€”RingHom.map_det

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
map_det πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instFunLike
Matrix.det
Matrix
Matrix.nonAssocSemiring
mapMatrix
β€”Matrix.det_apply'
map_sum
RingHomClass.toAddMonoidHomClass
instRingHomClass
Finset.sum_congr
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_intCast
map_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Finset.prod_congr

---

← Back to Index