Documentation Verification Report

Card

📁 Source: Mathlib/LinearAlgebra/Matrix/GeneralLinearGroup/Card.lean

Statistics

MetricCount
Definitionsequiv_GL_linearindependent
1
Theoremscard_GL_field, card_linearIndependent
2
Total3

Matrix

Definitions

NameCategoryTheorems
equiv_GL_linearindependent 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
card_GL_field 📖mathematicalNat.card
GeneralLinearGroup
Fin.fintype
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Finset.prod
Nat.instCommMonoid
Finset.univ
Monoid.toNatPow
Nat.instMonoid
Fintype.card
Nat.card_congr
card_linearIndependent
Pi.finite
Finite.of_fintype
Module.finrank_fintype_fun_eq_card
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Fintype.card_fin

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
card_linearIndependent 📖mathematicalModule.finrank
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Nat.card
LinearIndependent
Finset.prod
Nat.instCommMonoid
Finset.univ
Fin.fintype
Monoid.toNatPow
Nat.instMonoid
Fintype.card
Subtype.finite
Pi.finite
Finite.of_fintype
Nat.card_eq_fintype_card
Fintype.card_congr'
Unique.instSubsingleton
Fin.isEmpty'
Finsupp.linearCombination_fin_zero
LinearMap.ker_zero
Finset.prod_congr
Finset.univ_eq_empty
Fintype.card_compl_set
Submodule.addSubgroupClass
Submodule.smulMemClass
Module.card_eq_pow_finrank
finrank_span_eq_card
IsNoetherianRing.strongRankCondition
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
PrincipalIdealRing.isNoetherianRing
DivisionSemiring.isPrincipalIdealRing
Fintype.card_fin
Fintype.card_congr
Fintype.card_sigma
Fintype.sum_congr
Finset.sum_const
mul_comm
Fin.prod_univ_succAbove
Fin.succAbove_last

---

← Back to Index