Documentation Verification Report

Hadamard

πŸ“ Source: Mathlib/LinearAlgebra/Matrix/Hadamard.lean

Statistics

MetricCount
Definitionshadamard, Β«term_βŠ™_Β»
2
Theoremsadd_hadamard, diagonal_hadamard, diagonal_hadamard_diagonal, diagonal_hadamard_eq_diagonal_iff, dotProduct_vecMul_hadamard, hadamard_add, hadamard_apply, hadamard_assoc, hadamard_comm, hadamard_diagonal, hadamard_diagonal_eq_diagonal_iff, hadamard_of_one, hadamard_one, hadamard_one_eq_diagonal_iff, hadamard_one_eq_one_iff, hadamard_one_eq_zero_iff, hadamard_self_eq_self_iff, hadamard_smul, hadamard_zero, of_one_hadamard, one_hadamard, one_hadamard_eq_diagonal_iff, one_hadamard_eq_one_iff, one_hadamard_eq_zero_iff, single_hadamard_single_eq, single_hadamard_single_of_ne, smul_hadamard, sum_hadamard_eq, zero_hadamard
29
Total31

Matrix

Definitions

NameCategoryTheorems
hadamard πŸ“–CompOp
31 mathmath: hadamard_self_eq_self_iff, single_hadamard_single_eq, hadamard_smul, hadamard_one_eq_zero_iff, sum_hadamard_eq, hadamard_diagonal_eq_diagonal_iff, hadamard_assoc, hadamard_of_one, hadamard_one, vec_hadamard, of_one_hadamard, hadamard_apply, one_hadamard_eq_diagonal_iff, hadamard_one_eq_one_iff, one_hadamard_eq_one_iff, single_hadamard_single_of_ne, one_hadamard, zero_hadamard, hadamard_zero, hadamard_comm, add_hadamard, one_hadamard_eq_zero_iff, diagonal_hadamard, dotProduct_vecMul_hadamard, isAdjMatrix_iff_hadamard, diagonal_hadamard_diagonal, smul_hadamard, diagonal_hadamard_eq_diagonal_iff, hadamard_add, hadamard_diagonal, hadamard_one_eq_diagonal_iff
Β«term_βŠ™_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_hadamard πŸ“–mathematicalβ€”hadamard
Distrib.toMul
Matrix
add
Distrib.toAdd
β€”ext
right_distrib
Distrib.rightDistribClass
diagonal_hadamard πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
diagonal
MulZeroClass.toZero
Pi.instMul
diag
β€”ext
ite_mul
MulZeroClass.zero_mul
diagonal_hadamard_diagonal πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
diagonal
MulZeroClass.toZero
Pi.instMul
β€”diagonal_hadamard
diag_diagonal
diagonal_hadamard_eq_diagonal_iff πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
diagonal
MulZeroClass.toZero
Pi.instMul
diag
β€”diagonal_hadamard
dotProduct_vecMul_hadamard πŸ“–mathematicalβ€”dotProduct
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
vecMul
hadamard
trace
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
diagonal
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
transpose
β€”sum_hadamard_eq
Finset.sum_comm
Finset.sum_congr
Finset.sum_mul
mul_assoc
diagonal_mul
mul_diagonal
hadamard_add πŸ“–mathematicalβ€”hadamard
Distrib.toMul
Matrix
add
Distrib.toAdd
β€”ext
left_distrib
Distrib.leftDistribClass
hadamard_apply πŸ“–mathematicalβ€”hadamardβ€”β€”
hadamard_assoc πŸ“–mathematicalβ€”hadamard
Semigroup.toMul
β€”ext
mul_assoc
hadamard_comm πŸ“–mathematicalβ€”hadamard
CommMagma.toMul
β€”ext
mul_comm
hadamard_diagonal πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
diagonal
MulZeroClass.toZero
Pi.instMul
diag
β€”ext
mul_ite
MulZeroClass.mul_zero
hadamard_diagonal_eq_diagonal_iff πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
diagonal
MulZeroClass.toZero
Pi.instMul
diag
β€”hadamard_diagonal
hadamard_of_one πŸ“–mathematicalβ€”hadamard
MulOne.toMul
MulOneClass.toMulOne
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
of
Pi.instOne
MulOne.toOne
β€”ext
mul_one
hadamard_one πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
Matrix
one
MulZeroClass.toZero
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
diagonal
diag
β€”hadamard_diagonal
mul_one
hadamard_one_eq_diagonal_iff πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
Matrix
one
MulZeroClass.toZero
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
diagonal
diag
β€”mul_one
hadamard_diagonal_eq_diagonal_iff
hadamard_one_eq_one_iff πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
Matrix
one
MulZeroClass.toZero
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
diag
Pi.instOne
β€”hadamard_one_eq_diagonal_iff
hadamard_one_eq_zero_iff πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
Matrix
one
MulZeroClass.toZero
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
zero
diag
Pi.instZero
β€”diagonal_zero'
hadamard_one_eq_diagonal_iff
hadamard_self_eq_self_iff πŸ“–mathematicalβ€”hadamard
IsIdempotentElem
β€”ext_iff
hadamard_smul πŸ“–mathematicalβ€”hadamard
Matrix
smul
β€”ext
mul_smul_comm
hadamard_zero πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
Matrix
zero
MulZeroClass.toZero
β€”ext
MulZeroClass.mul_zero
of_one_hadamard πŸ“–mathematicalβ€”hadamard
MulOne.toMul
MulOneClass.toMulOne
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
of
Pi.instOne
MulOne.toOne
β€”ext
one_mul
one_hadamard πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
Matrix
one
MulZeroClass.toZero
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
diagonal
diag
β€”diagonal_hadamard
one_mul
one_hadamard_eq_diagonal_iff πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
Matrix
one
MulZeroClass.toZero
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
diagonal
diag
β€”one_mul
diagonal_hadamard_eq_diagonal_iff
one_hadamard_eq_one_iff πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
Matrix
one
MulZeroClass.toZero
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
diag
Pi.instOne
β€”one_hadamard_eq_diagonal_iff
one_hadamard_eq_zero_iff πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
Matrix
one
MulZeroClass.toZero
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
zero
diag
Pi.instZero
β€”diagonal_zero'
one_hadamard_eq_diagonal_iff
single_hadamard_single_eq πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
single
MulZeroClass.toZero
β€”ext
apply_iteβ‚‚
MulZeroClass.zero_mul
single_hadamard_single_of_ne πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
single
MulZeroClass.toZero
Matrix
zero
β€”not_and_or
ext
mul_ite
ite_mul
MulZeroClass.zero_mul
MulZeroClass.mul_zero
smul_hadamard πŸ“–mathematicalβ€”hadamard
Matrix
smul
β€”ext
smul_mul_assoc
sum_hadamard_eq πŸ“–mathematicalβ€”Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.univ
hadamard
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
trace
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
transpose
β€”β€”
zero_hadamard πŸ“–mathematicalβ€”hadamard
MulZeroClass.toMul
Matrix
zero
MulZeroClass.toZero
β€”ext
MulZeroClass.zero_mul

---

← Back to Index