Documentation Verification Report

Hermitian

πŸ“ Source: Mathlib/LinearAlgebra/Matrix/Hermitian.lean

Statistics

MetricCount
DefinitionsIsHermitian, instDecidableIsHermitianOfEqConjTranspose, Β«term_βŠ•α΅₯_Β»
3
TheoremsisHermitian, add, adjugate, apply, commute_iff, conjTranspose, eq, ext, ext_iff, fromBlocks, fromBlocks₁₁, fromBlocksβ‚‚β‚‚, inv, isSelfAdjoint, map, neg, of_subsingleton, pow, sub, submatrix, transpose, zpow, isHermitian_add_transpose_self, isHermitian_conjTranspose_iff, isHermitian_conjTranspose_mul_mul, isHermitian_conjTranspose_mul_self, isHermitian_diagonal, isHermitian_diagonal_iff, isHermitian_diagonal_of_self_adjoint, isHermitian_fromBlocks_iff, isHermitian_iff_isSelfAdjoint, isHermitian_intCast, isHermitian_inv, isHermitian_mul_conjTranspose_self, isHermitian_mul_mul_conjTranspose, isHermitian_natCast, isHermitian_one, isHermitian_submatrix_equiv, isHermitian_transpose_add_self, isHermitian_transpose_iff, isHermitian_transpose_mul_self, isHermitian_zero, schur_complement_eq₁₁, schur_complement_eqβ‚‚β‚‚
44
Total47

IsSelfAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
isHermitian πŸ“–mathematicalIsSelfAdjoint
Matrix
Matrix.instStar
Matrix.IsHermitianβ€”Matrix.isHermitian_iff_isSelfAdjoint

Matrix

Definitions

NameCategoryTheorems
IsHermitian πŸ“–MathDef
32 mathmath: isHermitian_conjTranspose_mul_self, PosSemidef.isHermitian, posDef_iff_dotProduct_mulVec, PosDef.eigenvalues_pos, isHermitian_mul_conjTranspose_self, isHermitian_conjTranspose_iff, IsHermitian.ext_iff, PosSemidef.eigenvalues_nonneg, IsSelfAdjoint.isHermitian, isHermitian_iff_isSelfAdjoint, isHermitian_gram, IsHermitian.ext, isHermitian_inv, isHermitian_submatrix_equiv, isHermitian_add_transpose_self, isHermitian_iff_isSymmetric, isHermitian_fromBlocks_iff, isHermitian_transpose_add_self, isHermitian_natCast, posSemidef_iff_dotProduct_mulVec, IsHermitian.of_subsingleton, isHermitian_zero, isHermitian_one, isHermitian_diagonal_iff, isHermitian_diagonal_of_self_adjoint, isHermitian_transpose_mul_self, isHermitian_diagonal, isHermitian_intCast, isHermitian_transpose_iff, posSemidef_iff_isHermitian_and_spectrum_nonneg, PosDef.isHermitian, LinearMap.isSymm_iff_isHermitian_toMatrix
instDecidableIsHermitianOfEqConjTranspose πŸ“–CompOpβ€”
Β«term_βŠ•α΅₯_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isHermitian_add_transpose_self πŸ“–mathematicalβ€”IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
Matrix
add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
conjTranspose
β€”IsSelfAdjoint.add_star_self
isHermitian_conjTranspose_iff πŸ“–mathematicalβ€”IsHermitian
InvolutiveStar.toStar
conjTranspose
β€”IsSelfAdjoint.star_iff
isHermitian_conjTranspose_mul_mul πŸ“–mathematicalIsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
conjTranspose
β€”mul_assoc
conjTranspose_mul
IsHermitian.eq
conjTranspose_conjTranspose
isHermitian_conjTranspose_mul_self πŸ“–mathematicalβ€”IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
conjTranspose
β€”IsHermitian.eq_1
conjTranspose_mul
conjTranspose_conjTranspose
isHermitian_diagonal πŸ“–mathematicalβ€”IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
diagonal
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”isHermitian_diagonal_of_self_adjoint
IsSelfAdjoint.all
Pi.instTrivialStarForall
isHermitian_diagonal_iff πŸ“–mathematicalβ€”IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
diagonal
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
IsSelfAdjoint
β€”diagonal_transpose
diagonal_map
star_zero
isHermitian_diagonal_of_self_adjoint πŸ“–mathematicalIsSelfAdjoint
Pi.instStarForall
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
IsHermitian
diagonal
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”diagonal_conjTranspose
isHermitian_fromBlocks_iff πŸ“–mathematicalβ€”IsHermitian
InvolutiveStar.toStar
fromBlocks
conjTranspose
β€”IsHermitian.fromBlocks
isHermitian_iff_isSelfAdjoint πŸ“–mathematicalβ€”IsHermitian
IsSelfAdjoint
Matrix
instStar
β€”β€”
isHermitian_intCast πŸ“–mathematicalβ€”IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
StarRing.toStarAddMonoid
Matrix
instIntCastOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”conjTranspose_intCast
isHermitian_inv πŸ“–mathematicalβ€”IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
StarRing.toStarAddMonoid
Matrix
inv
β€”inv_inv_of_invertible
IsHermitian.inv
isHermitian_mul_conjTranspose_self πŸ“–mathematicalβ€”IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
conjTranspose
β€”IsHermitian.eq_1
conjTranspose_mul
conjTranspose_conjTranspose
isHermitian_mul_mul_conjTranspose πŸ“–mathematicalIsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
conjTranspose
β€”mul_assoc
conjTranspose_mul
conjTranspose_conjTranspose
IsHermitian.eq
isHermitian_natCast πŸ“–mathematicalβ€”IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
Matrix
instNatCastOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”conjTranspose_natCast
isHermitian_one πŸ“–mathematicalβ€”IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
Matrix
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”conjTranspose_one
isHermitian_submatrix_equiv πŸ“–mathematicalβ€”IsHermitian
submatrix
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”submatrix_submatrix
Equiv.self_comp_symm
submatrix_id_id
IsHermitian.submatrix
isHermitian_transpose_add_self πŸ“–mathematicalβ€”IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
Matrix
add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
conjTranspose
β€”IsSelfAdjoint.star_add_self
isHermitian_transpose_iff πŸ“–mathematicalβ€”IsHermitian
transpose
β€”transpose_transpose
IsHermitian.transpose
isHermitian_transpose_mul_self πŸ“–mathematicalβ€”IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
conjTranspose
β€”isHermitian_conjTranspose_mul_self
isHermitian_zero πŸ“–mathematicalβ€”IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
Matrix
zero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”IsSelfAdjoint.zero
schur_complement_eq₁₁ πŸ“–mathematicalIsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
StarRing.toStarAddMonoid
dotProduct
instFintypeSum
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
vecMul
Star.star
Pi.instStarForall
fromBlocks
conjTranspose
Distrib.toAdd
Pi.instAdd
mulVec
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
inv
sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
β€”Function.star_sumElim
vecMul_fromBlocks
sumElim_dotProduct_sumElim
add_dotProduct
StarAddMonoid.star_add
star_mulVec
conjTranspose_mul
conjTranspose_nonsing_inv
IsHermitian.eq
add_vecMul
vecMul_vecMul
mul_assoc
inv_mul_of_invertible
mul_one
dotProduct_add
dotProduct_mulVec
mul_inv_cancel_left_of_invertible
vecMul_sub
sub_dotProduct
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.const_add_termg
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Tactic.Abel.zero_termg
schur_complement_eqβ‚‚β‚‚ πŸ“–mathematicalIsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
StarRing.toStarAddMonoid
dotProduct
instFintypeSum
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
vecMul
Star.star
Pi.instStarForall
fromBlocks
conjTranspose
Distrib.toAdd
Pi.instAdd
mulVec
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
inv
sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
β€”Function.star_sumElim
vecMul_fromBlocks
sumElim_dotProduct_sumElim
add_dotProduct
StarAddMonoid.star_add
star_mulVec
conjTranspose_mul
conjTranspose_conjTranspose
conjTranspose_nonsing_inv
IsHermitian.eq
add_vecMul
vecMul_vecMul
mul_assoc
inv_mul_of_invertible
mul_one
dotProduct_add
dotProduct_mulVec
mul_inv_cancel_left_of_invertible
vecMul_sub
sub_dotProduct
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
add_zero
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Tactic.Abel.zero_termg

Matrix.IsHermitian

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
Matrix
Matrix.add
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
β€”IsSelfAdjoint.add
adjugate πŸ“–mathematicalMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
StarRing.toStarAddMonoid
Matrix.adjugateβ€”Matrix.adjugate_conjTranspose
eq
apply πŸ“–mathematicalMatrix.IsHermitianStar.starβ€”β€”
commute_iff πŸ“–mathematicalMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
StarRing.toStarAddMonoid
Commute
Matrix
Matrix.instMulOfFintypeOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
β€”IsSelfAdjoint.commute_iff
isSelfAdjoint
conjTranspose πŸ“–mathematicalMatrix.IsHermitianMatrix.conjTransposeβ€”map
transpose
eq πŸ“–mathematicalMatrix.IsHermitianMatrix.conjTransposeβ€”β€”
ext πŸ“–mathematicalStar.starMatrix.IsHermitianβ€”Matrix.ext
ext_iff πŸ“–mathematicalβ€”Matrix.IsHermitian
Star.star
β€”apply
ext
fromBlocks πŸ“–mathematicalMatrix.IsHermitian
InvolutiveStar.toStar
Matrix.conjTranspose
Matrix.fromBlocksβ€”Matrix.conjTranspose_conjTranspose
Matrix.fromBlocks_conjTranspose
fromBlocks₁₁ πŸ“–mathematicalMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
StarRing.toStarAddMonoid
Matrix.fromBlocks
Matrix.conjTranspose
Matrix
Matrix.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Matrix.inv
β€”Matrix.isHermitian_conjTranspose_mul_mul
inv
Matrix.isHermitian_fromBlocks_iff
sub
Matrix.conjTranspose_conjTranspose
add
sub_add_cancel
fromBlocksβ‚‚β‚‚ πŸ“–mathematicalMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
StarRing.toStarAddMonoid
Matrix.fromBlocks
Matrix.conjTranspose
Matrix
Matrix.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Matrix.inv
β€”Matrix.isHermitian_submatrix_equiv
Equiv.sumComm_apply
Matrix.fromBlocks_submatrix_sum_swap_sum_swap
Matrix.conjTranspose_conjTranspose
fromBlocks₁₁
inv πŸ“–mathematicalMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
StarRing.toStarAddMonoid
Matrix
Matrix.inv
β€”Matrix.conjTranspose_nonsing_inv
eq
isSelfAdjoint πŸ“–mathematicalMatrix.IsHermitianIsSelfAdjoint
Matrix
Matrix.instStar
β€”Matrix.isHermitian_iff_isSelfAdjoint
map πŸ“–mathematicalMatrix.IsHermitian
Function.Semiconj
Star.star
Matrix.mapβ€”Matrix.conjTranspose_map
eq
neg πŸ“–mathematicalMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Matrix
Matrix.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”IsSelfAdjoint.neg
of_subsingleton πŸ“–mathematicalβ€”Matrix.IsHermitianβ€”ext
pow πŸ“–mathematicalMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
Matrix
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
β€”IsSelfAdjoint.pow
sub πŸ“–mathematicalMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Matrix
Matrix.sub
SubNegMonoid.toSub
β€”IsSelfAdjoint.sub
submatrix πŸ“–mathematicalMatrix.IsHermitianMatrix.submatrixβ€”Matrix.conjTranspose_submatrix
transpose πŸ“–mathematicalMatrix.IsHermitianMatrix.transposeβ€”eq_1
Matrix.conjTranspose.eq_1
Matrix.transpose_map
zpow πŸ“–mathematicalMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
StarRing.toStarAddMonoid
Matrix
DivInvMonoid.toZPow
Matrix.instDivInvMonoid
β€”eq_1
Matrix.conjTranspose_zpow

---

← Back to Index