Documentation Verification Report

InvariantBasisNumber

📁 Source: Mathlib/LinearAlgebra/Matrix/InvariantBasisNumber.lean

Statistics

MetricCount
DefinitionsInvariantBasisNumber
1
Theoremssquare_of_invertible, invariantBasisNumber_iff, rankCondition_iff, instInvariantBasisNumberMulOpposite, instIsStablyFiniteRingOfOrzechProperty, instRankConditionMulOpposite, instRankConditionOfIsStablyFiniteRingOfNontrivial, invariantBasisNumber_iff_matrix, rankCondition_iff_le_of_comp_eq_one, rankCondition_iff_matrix, rankCondition_of_nontrivial_of_commSemiring
11
Total12

Matrix

Theorems

NameKindAssumesProvesValidatesDepends On
square_of_invertible 📖mathematicalMatrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.cardcard_eq_of_linearEquiv

MulOpposite

Theorems

NameKindAssumesProvesValidatesDepends On
invariantBasisNumber_iff 📖mathematicalInvariantBasisNumber
MulOpposite
instSemiring
Equiv.forall_congr_right
Equiv.injective
forall_swap
AddEquiv.injective
Matrix.ext
Finset.sum_congr
Finset.unop_sum
Matrix.map_one
Matrix.transpose_one
rankCondition_iff 📖mathematicalRankCondition
MulOpposite
instSemiring
Equiv.forall_congr_right
Equiv.injective
forall_swap
AddEquiv.injective
Matrix.ext
Finset.sum_congr
Finset.unop_sum
Matrix.map_one
Matrix.transpose_one

(root)

Definitions

NameCategoryTheorems
InvariantBasisNumber 📖CompData
6 mathmath: invariantBasisNumber_of_rankCondition, invariantBasisNumber_of_nontrivial_of_commRing, invariantBasisNumber_iff_matrix, MulOpposite.invariantBasisNumber_iff, instInvariantBasisNumberMulOpposite, invariantBasisNumber_iff

Theorems

NameKindAssumesProvesValidatesDepends On
instInvariantBasisNumberMulOpposite 📖mathematicalInvariantBasisNumber
MulOpposite
MulOpposite.instSemiring
MulOpposite.invariantBasisNumber_iff
instIsStablyFiniteRingOfOrzechProperty 📖mathematicalIsStablyFiniteRing
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
isStablyFiniteRing_iff_injective_of_surjective
OrzechProperty.injective_of_surjective_endomorphism
Module.Finite.pi
Finite.of_fintype
Module.Finite.self
instRankConditionMulOpposite 📖mathematicalRankCondition
MulOpposite
MulOpposite.instSemiring
MulOpposite.rankCondition_iff
instRankConditionOfIsStablyFiniteRingOfNontrivial 📖mathematicalRankConditionLT.lt.le
LinearMap.funLeft_surjective_of_injective
Fin.castLE_injective
Function.Injective.of_comp_right
Module.End.injective_of_surjective_fin
RingHomCompTriple.ids
Function.injective_comp_right_iff_surjective
LT.lt.ne
invariantBasisNumber_iff_matrix 📖mathematicalInvariantBasisNumberRingHomInvPair.ids
invariantBasisNumber_iff
Function.smulCommClass
SMulCommClass.opposite_mid
IsScalarTower.left
RingHomCompTriple.ids
LinearEquiv.self_trans_symm
LinearMap.toMatrixRight'_id
LinearEquiv.symm_trans_self
rankCondition_iff_le_of_comp_eq_one 📖mathematicalRankConditionRingHomCompTriple.ids
rankCondition_iff
LinearMap.surjective_of_comp_eq_id
RingHomInvPair.ids
Module.projective_lifting_property
Module.Projective.of_free
Module.Free.function
Finite.of_fintype
Module.Free.self
rankCondition_iff_matrix 📖mathematicalRankConditionRingHomCompTriple.ids
Function.smulCommClass
SMulCommClass.opposite_mid
IsScalarTower.left
RingHomInvPair.ids
Equiv.forall_congr_right
LinearEquiv.injective
rankCondition_of_nontrivial_of_commSemiring 📖mathematicalRankCondition
CommSemiring.toSemiring
instRankConditionOfIsStablyFiniteRingOfNontrivial
Matrix.instIsStablyFiniteRingOfCommSemiring

---

← Back to Index