| Name | Category | Theorems |
detInvertibleOfInvertible π | CompOp | 1 mathmath: invertibleEquivDetInvertible_apply
|
detInvertibleOfLeftInverse π | CompOp | β |
detInvertibleOfRightInverse π | CompOp | β |
diagonalInvertible π | CompOp | 1 mathmath: diagonalInvertibleEquivInvertible_symm_apply
|
diagonalInvertibleEquivInvertible π | CompOp | 2 mathmath: diagonalInvertibleEquivInvertible_symm_apply, diagonalInvertibleEquivInvertible_apply
|
instInvOneClass π | CompOp | β |
instInvertibleInv π | CompOp | β |
inv π | CompOp | 113 mathmath: discr_conj, list_prod_inv_reverse, inv_mul_eq_iff_eq_mul_of_invertible, det_smul_inv_mulVec_eq_cramer, det_add_replicateCol_mul_replicateRow, lieConj_apply, LieAlgebra.Orthogonal.soIndefiniteEquiv_apply, IsHermitian.fromBlocksββ, mul_inv_eq_iff_eq_mul_of_invertible, zpow_neg_one, inv_fromBlocks_zeroββ_of_isUnit_iff, isHyperbolic_conj_iff, exp_conj', exp_neg, isHyperbolic_conj'_iff, isElliptic_conj'_iff, PosDef.fromBlocksββ, mul_inv_of_invertible, coe_units_inv, det_add_mul, isParabolic_conj'_iff, inv_zero, mul_inv_cancel_right_of_invertible, inv_add_inv, inv_smul', inv_sub_inv, isUnit_nonsing_inv_det_iff, invOf_eq_nonsing_inv, inv_smul, inv_reindex, conjTranspose_nonsing_inv, nonsing_inv_mul, isAdjointPair_equiv', inv_def, isParabolic_conj_iff, schur_complement_eqββ, nonsing_inv_nonsing_inv, inv_eq_right_inv, continuousAt_matrix_inv, inv_adjugate, isElliptic_conj_iff, nonsing_inv_eq_ringInverse, lieConj_symm_apply, isHermitian_inv, nonsing_inv_apply, inv_eq_left_inv, det_conj', BlockTriangular.toBlock_inverse_mul_toBlock_eq_one, isAdjointPair_equiv, schur_complement_eqββ, mul_inv_cancel_left_of_invertible, det_nonsing_inv_mul_det, AffineBasis.toMatrix_inv_vecMul_toMatrix, exp_conj, PosDef.fromBlocksββ, IsHermitian.inv, nonsing_inv_cancel_or_zero, inv_pow', NumberField.inverse_basisMatrix_mulVec_eq_repr, GeneralLinearGroup.coe_inv, nonsing_inv_apply_not_isUnit, PosSemidef.inv_sqrt, inv_mul_cancel_right_of_invertible, discr_conj', mul_inv_rev, toBlock_inverse_eq_zero, mul_nonsing_inv_cancel_right, inv_kronecker, pow_sub', inv_mul_of_invertible, zpow_neg, det_conj, GeneralLinearGroup.coe_map_mul_map_inv, isUnit_nonsing_inv_iff, blockTriangular_inv_of_blockTriangular, nonsing_inv_mul_cancel_right, inv_zpow', disc_conj, inv_fromBlocks_zeroββ_of_isUnit_iff, inv_submatrix_equiv, J_inv, posDef_inv_iff, transpose_nonsing_inv, mul_nonsing_inv_cancel_left, IsHermitian.fromBlocksββ, charpoly_inv, BlockTriangular.inv_toBlock, nonsing_inv_mul_cancel_left, IsSymm.inv, zpow_sub_one, SymplecticGroup.coe_inv', inv_zpow, pow_inv_comm', disc_conj', LinearEquiv.ofIsUnitDet_symm_apply, skewAdjointMatricesLieSubalgebraEquiv_apply, zpow_neg_natCast, PosSemidef.inv, GeneralLinearGroup.coe_map_inv_mul_map, mul_nonsing_inv, inv_mulVec_eq_vec, inv_subsingleton, inv_mul_cancel_left_of_invertible, trace_conj', inv_diagonal, SymplecticGroup.inv_eq_symplectic_inv, isUnit_nonsing_inv_det, inv_inv_inv, trace_conj, det_nonsing_inv, PosDef.inv, inv_inv_of_invertible, det_smul_inv_vecMul_eq_cramer_transpose
|
invertibleEquivDetInvertible π | CompOp | 2 mathmath: invertibleEquivDetInvertible_apply, invertibleEquivDetInvertible_symm_apply
|
invertibleOfDetInvertible π | CompOp | 1 mathmath: invertibleEquivDetInvertible_symm_apply
|
invertibleOfDiagonalInvertible π | CompOp | 1 mathmath: diagonalInvertibleEquivInvertible_apply
|
invertibleOfIsUnitDet π | CompOp | β |
invertibleOfSubmatrixEquivInvertible π | CompOp | 1 mathmath: submatrixEquivInvertibleEquivInvertible_apply
|
nonsingInvUnit π | CompOp | 1 mathmath: unitOfDetInvertible_eq_nonsingInvUnit
|
submatrixEquivInvertible π | CompOp | 1 mathmath: submatrixEquivInvertibleEquivInvertible_symm_apply
|
submatrixEquivInvertibleEquivInvertible π | CompOp | 2 mathmath: submatrixEquivInvertibleEquivInvertible_apply, submatrixEquivInvertibleEquivInvertible_symm_apply
|
unitOfDetInvertible π | CompOp | 1 mathmath: unitOfDetInvertible_eq_nonsingInvUnit
|