Documentation Verification Report

PosDef

πŸ“ Source: Mathlib/LinearAlgebra/Matrix/PosDef.lean

Statistics

MetricCount
DefinitionsPosDef, PosSemidef, PosDef
3
TheoremsposDef_star_left_conjugate_iff, posDef_star_right_conjugate_iff, posSemidef_star_left_conjugate_iff, posSemidef_star_right_conjugate_iff, add, add_posSemidef, conjTranspose, conjTranspose_mul_mul_same, conjTranspose_mul_self, diag_pos, diagonal, dotProduct_mulVec_pos, fromBlocks₁₁, fromBlocksβ‚‚β‚‚, intCast, inv, isHermitian, isUnit, mul_conjTranspose_self, mul_mul_conjTranspose_same, natCast, ofNat, of_dotProduct_mulVec_pos, of_subsingleton, of_toQuadraticForm', one, posSemidef, posSemidef_add, smul, toQuadraticForm', trace_pos, transpose, transpose_iff, add, conjTranspose, conjTranspose_mul_mul_same, diag_nonneg, diagonal, dotProduct_mulVec_nonneg, intCast, inv, isHermitian, mul_mul_conjTranspose_same, natCast, ofNat, of_dotProduct_mulVec_nonneg, one, pow, smul, submatrix, trace_nonneg, transpose, zero, zpow, posDef_conjTranspose_iff, posDef_diagonal_iff, posDef_iff_dotProduct_mulVec, posDef_intCast_iff, posDef_inv_iff, posDef_natCast_iff, posDef_sum, posSemidef_conjTranspose_iff, posSemidef_conjTranspose_mul_self, posSemidef_diagonal_iff, posSemidef_iff_dotProduct_mulVec, posSemidef_intCast_iff, posSemidef_self_mul_conjTranspose, posSemidef_submatrix_equiv, posSemidef_sum, posSemidef_transpose_iff, posSemidef_vecMulVec_self_star, posSemidef_vecMulVec_star_self, trace_conjTranspose_mul_self_eq_zero_iff, trace_mul_conjTranspose_self_eq_zero_iff, posDef_of_toMatrix', posDef_toMatrix'
76
Total79

Matrix

Definitions

NameCategoryTheorems
PosDef πŸ“–MathDef
27 mathmath: QuadraticForm.posDef_toMatrix', posDef_iff_dotProduct_mulVec, PosDef.ofNat, PosSemidef.posDef_iff_isUnit, PosDef.natCast, PosDef.of_subsingleton, posDef_gram_of_linearIndependent, PosDef.one, posDef_conjTranspose_iff, posDef_gram_iff_linearIndependent, PosDef.conjTranspose_mul_self, isStrictlyPositive_iff_posDef, PosDef.transpose_iff, posDef_iff_eq_conjTranspose_mul_self, PosDef.of_toQuadraticForm', posDef_natCast_iff, posDef_inv_iff, posDef_intCast_iff, PosDef.diagonal, IsHermitian.posDef_iff_eigenvalues_pos, PosDef.intCast, IsStrictlyPositive.posDef, IsUnit.posDef_star_left_conjugate_iff, PosDef.of_dotProduct_mulVec_pos, PosDef.mul_conjTranspose_self, posDef_diagonal_iff, IsUnit.posDef_star_right_conjugate_iff
PosSemidef πŸ“–MathDef
36 mathmath: posSemidef_conjTranspose_mul_self, posSemidef_iff_eq_conjTranspose_mul_self, le_iff, posSemidef_self_mul_conjTranspose, PosSemidef.intCast, PosSemidef.natCast, IsUnit.posSemidef_star_right_conjugate_iff, PosDef.fromBlocks₁₁, SimpleGraph.posSemidef_lapMatrix, posSemidef_vecMulVec_self_star, PosSemidef.one, PosSemidef.posSemidef_sqrt, LE.le.posSemidef, PosSemidef.diagonal, LinearMap.isPosSemidef_iff_posSemidef_toMatrix, IsHermitian.posSemidef_iff_eigenvalues_nonneg, nonneg_iff_posSemidef, IsHermitian.posSemidef_of_eigenvalues_nonneg, isPositive_toEuclideanLin_iff, posSemidef_vecMulVec_star_self, PosSemidef.zero, posSemidef_gram, PosDef.fromBlocksβ‚‚β‚‚, posSemidef_transpose_iff, posSemidef_intCast_iff, posSemidef_iff_eq_sum_vecMulVec, PosDef.posSemidef, posSemidef_iff_dotProduct_mulVec, posSemidef_diagonal_iff, PosSemidef.ofNat, IsUnit.posSemidef_star_left_conjugate_iff, PosSemidef.of_dotProduct_mulVec_nonneg, LinearMap.posSemidef_toMatrix_iff, posSemidef_submatrix_equiv, posSemidef_conjTranspose_iff, posSemidef_iff_isHermitian_and_spectrum_nonneg

Theorems

NameKindAssumesProvesValidatesDepends On
posDef_conjTranspose_iff πŸ“–mathematicalβ€”PosDef
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
StarRing.toStarAddMonoid
β€”conjTranspose_conjTranspose
PosDef.conjTranspose
posDef_diagonal_iff πŸ“–mathematicalβ€”PosDef
diagonal
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Preorder.toLT
PartialOrder.toPreorder
β€”NeZero.one
Finsupp.sum_single_index
MulZeroClass.mul_zero
mul_one
star_zero
diagonal_apply_eq
MulZeroClass.zero_mul
star_one
one_mul
PosDef.diagonal
posDef_iff_dotProduct_mulVec πŸ“–mathematicalβ€”PosDef
IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
StarRing.toStarAddMonoid
Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
dotProduct
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Star.star
Pi.instStarForall
mulVec
β€”Finite.of_fintype
Finsupp.coe_eq_zero
mul_assoc
Finsupp.sum_fintype
MulZeroClass.mul_zero
Finset.sum_congr
star_zero
MulZeroClass.zero_mul
Finset.sum_const_zero
Finset.mul_sum
Equiv.forall_congr_right
posDef_intCast_iff πŸ“–mathematicalβ€”PosDef
Matrix
instIntCastOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”posDef_diagonal_iff
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
StarOrderedRing.toIsOrderedAddMonoid
instZeroLEOneClass
NeZero.one
posDef_inv_iff πŸ“–mathematicalβ€”PosDef
DivisionRing.toRing
Field.toDivisionRing
Matrix
inv
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”PosDef.inv
inv_inv_of_invertible
isUnit_nonsing_inv_iff
PosDef.isUnit
posDef_natCast_iff πŸ“–mathematicalβ€”PosDef
Matrix
instNatCastOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”posDef_diagonal_iff
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
StarOrderedRing.toIsOrderedAddMonoid
instZeroLEOneClass
NeZero.one
posDef_sum πŸ“–mathematicalFinset.Nonempty
PosDef
Finset.sum
Matrix
addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Finset.induction_on
Finset.sum_insert
Finset.sum_congr
add_zero
PosDef.add
Finset.mem_insert_self
Finset.mem_insert_of_mem
posSemidef_conjTranspose_iff πŸ“–mathematicalβ€”PosSemidef
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
StarRing.toStarAddMonoid
β€”conjTranspose_conjTranspose
PosSemidef.conjTranspose
posSemidef_conjTranspose_mul_self πŸ“–mathematicalβ€”PosSemidef
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NonUnitalNonAssocSemiring.toAddCommMonoid
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”PosSemidef.of_dotProduct_mulVec_nonneg
isHermitian_conjTranspose_mul_self
mulVec_mulVec
dotProduct_mulVec
vecMul_conjTranspose
star_star
Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
StarOrderedRing.toIsOrderedAddMonoid
star_mul_self_nonneg
posSemidef_diagonal_iff πŸ“–mathematicalβ€”PosSemidef
diagonal
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Preorder.toLE
PartialOrder.toPreorder
β€”Finsupp.sum_single_index
MulZeroClass.mul_zero
mul_one
star_zero
diagonal_apply_eq
MulZeroClass.zero_mul
star_one
one_mul
PosSemidef.diagonal
posSemidef_iff_dotProduct_mulVec πŸ“–mathematicalβ€”PosSemidef
IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
StarRing.toStarAddMonoid
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
dotProduct
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Star.star
Pi.instStarForall
mulVec
β€”mul_assoc
Finsupp.sum_fintype
MulZeroClass.mul_zero
Finset.sum_congr
star_zero
MulZeroClass.zero_mul
Finset.sum_const_zero
Finite.of_fintype
Finset.mul_sum
Equiv.forall_congr_right
posSemidef_intCast_iff πŸ“–mathematicalβ€”PosSemidef
Matrix
instIntCastOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
StarOrderedRing.toIsOrderedAddMonoid
instZeroLEOneClass
NeZero.one
posSemidef_self_mul_conjTranspose πŸ“–mathematicalβ€”PosSemidef
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NonUnitalNonAssocSemiring.toAddCommMonoid
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”conjTranspose_conjTranspose
posSemidef_conjTranspose_mul_self
posSemidef_submatrix_equiv πŸ“–mathematicalβ€”PosSemidef
submatrix
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”submatrix_submatrix
Equiv.self_comp_symm
submatrix_id_id
PosSemidef.submatrix
posSemidef_sum πŸ“–mathematicalPosSemidefFinset.sum
Matrix
addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”isSelfAdjoint_sum
sum_apply
Finset.mul_sum
Finset.sum_mul
Finsupp.sum_finsetSum_comm
Finset.sum_nonneg
posSemidef_transpose_iff πŸ“–mathematicalβ€”PosSemidef
CommRing.toRing
transpose
β€”PosSemidef.transpose
posSemidef_vecMulVec_self_star πŸ“–mathematicalβ€”PosSemidef
vecMulVec
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Star.star
Pi.instStarForall
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
β€”vecMulVec_eq
posSemidef_vecMulVec_star_self πŸ“–mathematicalβ€”PosSemidef
vecMulVec
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Star.star
Pi.instStarForall
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
β€”vecMulVec_eq
trace_conjTranspose_mul_self_eq_zero_iff πŸ“–mathematicalβ€”trace
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
zero
β€”star_vec_dotProduct_vec
dotProduct_star_self_eq_zero
vec_eq_zero_iff
trace_mul_conjTranspose_self_eq_zero_iff πŸ“–mathematicalβ€”trace
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
zero
β€”conjTranspose_conjTranspose
trace_conjTranspose_mul_self_eq_zero_iff

Matrix.IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
posDef_star_left_conjugate_iff πŸ“–mathematicalIsUnit
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Ring.toSemiring
Matrix.PosDef
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NonUnitalNonAssocSemiring.toAddCommMonoid
Star.star
Matrix.instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”CanLift.prf
instCanLiftUnitsValIsUnit
Matrix.PosDef.conjTranspose_mul_mul_same
Matrix.mulVec_injective_of_isUnit
Units.isUnit
one_mul
star_one
mul_one
Units.mul_inv
mul_assoc
Matrix.star_mul
Matrix.star_eq_conjTranspose
posDef_star_right_conjugate_iff πŸ“–mathematicalIsUnit
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Ring.toSemiring
Matrix.PosDef
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NonUnitalNonAssocSemiring.toAddCommMonoid
Star.star
Matrix.instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”star_star
posDef_star_left_conjugate_iff
IsUnit.star
posSemidef_star_left_conjugate_iff πŸ“–mathematicalIsUnit
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Ring.toSemiring
Matrix.PosSemidef
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NonUnitalNonAssocSemiring.toAddCommMonoid
Star.star
Matrix.instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”CanLift.prf
instCanLiftUnitsValIsUnit
Matrix.PosSemidef.conjTranspose_mul_mul_same
Finite.of_fintype
one_mul
star_one
mul_one
Units.mul_inv
mul_assoc
Matrix.star_mul
Matrix.star_eq_conjTranspose
posSemidef_star_right_conjugate_iff πŸ“–mathematicalIsUnit
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Ring.toSemiring
Matrix.PosSemidef
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NonUnitalNonAssocSemiring.toAddCommMonoid
Star.star
Matrix.instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”star_star
posSemidef_star_left_conjugate_iff
IsUnit.star

Matrix.PosDef

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalMatrix.PosDefMatrix
Matrix.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”add_posSemidef
posSemidef
add_posSemidef πŸ“–mathematicalMatrix.PosDef
Matrix.PosSemidef
Matrix
Matrix.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Matrix.IsHermitian.add
isHermitian
Matrix.PosSemidef.isHermitian
mul_add
Distrib.leftDistribClass
add_mul
Distrib.rightDistribClass
Finsupp.sum_add
add_pos_of_pos_of_nonneg
conjTranspose πŸ“–mathematicalMatrix.PosDefMatrix.conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
StarRing.toStarAddMonoid
β€”β€”
conjTranspose_mul_mul_same πŸ“–mathematicalMatrix.PosDef
Matrix.mulVec
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Matrix
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocSemiring.toAddCommMonoid
Matrix.conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”of_dotProduct_mulVec_pos
Matrix.isHermitian_conjTranspose_mul_mul
Matrix.mulVec_zero
Matrix.dotProduct_mulVec
Matrix.star_mulVec
Matrix.vecMul_vecMul
dotProduct_mulVec_pos
conjTranspose_mul_self πŸ“–mathematicalMatrix.mulVec
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Matrix.PosDef
Matrix
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocSemiring.toAddCommMonoid
Matrix.conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”Matrix.mul_one
conjTranspose_mul_mul_same
one
diag_pos πŸ“–mathematicalMatrix.PosDefPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”NeZero.one
Finsupp.sum_single_index
MulZeroClass.mul_zero
mul_one
star_zero
MulZeroClass.zero_mul
star_one
one_mul
diagonal πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Matrix.PosDef
Matrix.diagonal
β€”Matrix.isHermitian_diagonal_of_self_adjoint
IsSelfAdjoint.of_nonneg
LT.lt.le
Finsupp.sum_pos'
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
StarOrderedRing.toIsOrderedAddMonoid
Finsupp.sum_nonneg
MulZeroClass.mul_zero
ite_mul
MulZeroClass.zero_mul
star_left_conjugate_nonneg
Finsupp.mem_support_iff
star_left_conjugate_pos
IsRegular.of_ne_zero
NoZeroDivisors.to_isCancelMulZero
dotProduct_mulVec_pos πŸ“–mathematicalMatrix.PosDefPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
dotProduct
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocSemiring.toAddCommMonoid
Star.star
Pi.instStarForall
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
Matrix.mulVec
β€”Matrix.posDef_iff_dotProduct_mulVec
fromBlocks₁₁ πŸ“–mathematicalMatrix.PosDef
CommRing.toRing
Matrix.PosSemidef
Matrix.fromBlocks
Matrix.conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
StarRing.toStarAddMonoid
Matrix
Matrix.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Matrix.inv
β€”Matrix.posSemidef_iff_dotProduct_mulVec
Matrix.IsHermitian.fromBlocks₁₁
Matrix.PosSemidef.of_dotProduct_mulVec_nonneg
Matrix.dotProduct_mulVec
zero_add
dotProduct_zero
neg_add_cancel
Matrix.schur_complement_eq₁₁
le_add_of_nonneg_of_le
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
StarOrderedRing.toIsOrderedRing
posSemidef
fromBlocksβ‚‚β‚‚ πŸ“–mathematicalMatrix.PosDef
CommRing.toRing
Matrix.PosSemidef
Matrix.fromBlocks
Matrix.conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
StarRing.toStarAddMonoid
Matrix
Matrix.sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Matrix.inv
β€”Matrix.posSemidef_submatrix_equiv
Equiv.sumComm_apply
Matrix.fromBlocks_submatrix_sum_swap_sum_swap
Matrix.conjTranspose_conjTranspose
fromBlocks₁₁
intCast πŸ“–mathematicalβ€”Matrix.PosDef
Matrix
Matrix.instIntCastOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
diagonal
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
StarOrderedRing.toIsOrderedAddMonoid
instZeroLEOneClass
NeZero.one
inv πŸ“–mathematicalMatrix.PosDef
DivisionRing.toRing
Field.toDivisionRing
Matrix
Matrix.inv
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”mul_mul_conjTranspose_same
isUnit
Matrix.inv_mul_of_invertible
one_mul
Matrix.conjTranspose_conjTranspose
conjTranspose
isHermitian πŸ“–mathematicalMatrix.PosDefMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
StarRing.toStarAddMonoid
β€”β€”
isUnit πŸ“–mathematicalMatrix.PosDef
DivisionRing.toRing
Field.toDivisionRing
IsUnit
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Function.not_injective_iff
Iff.not
Matrix.mulVec_injective_iff_isUnit
Matrix.mulVec_sub
sub_self
dotProduct_zero
dotProduct_mulVec_pos
mul_conjTranspose_self πŸ“–mathematicalMatrix.vecMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Matrix.PosDef
Matrix
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocSemiring.toAddCommMonoid
Matrix.conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”Matrix.mul_one
mul_mul_conjTranspose_same
one
mul_mul_conjTranspose_same πŸ“–mathematicalMatrix.PosDef
Matrix.vecMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Matrix
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocSemiring.toAddCommMonoid
Matrix.conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”star_injective
Matrix.conjTranspose_conjTranspose
conjTranspose_mul_mul_same
star_star
Matrix.star_vecMul
natCast πŸ“–mathematicalβ€”Matrix.PosDef
Matrix
Matrix.instNatCastOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
diagonal
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
StarOrderedRing.toIsOrderedAddMonoid
instZeroLEOneClass
NeZero.one
Nat.instCanonicallyOrderedAdd
ofNat πŸ“–mathematicalβ€”Matrix.PosDefβ€”natCast
Nat.AtLeastTwo.toNeZero
of_dotProduct_mulVec_pos πŸ“–mathematicalMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
StarRing.toStarAddMonoid
Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
dotProduct
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Star.star
Pi.instStarForall
Matrix.mulVec
Matrix.PosDefβ€”Matrix.posDef_iff_dotProduct_mulVec
of_subsingleton πŸ“–mathematicalβ€”Matrix.PosDefβ€”Matrix.IsHermitian.of_subsingleton
Unique.instSubsingleton
of_toQuadraticForm' πŸ“–mathematicalMatrix.IsSymm
Real
QuadraticMap.PosDef
CommRing.toCommSemiring
Real.commRing
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
CommSemiring.toSemiring
Semiring.toModule
Real.partialOrder
Matrix.toQuadraticMap'
Matrix.PosDef
Real.instRing
instStarRingReal
β€”of_dotProduct_mulVec_pos
Matrix.toLinearMapβ‚‚'_apply'
one πŸ“–mathematicalβ€”Matrix.PosDef
Matrix
Matrix.one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
diagonal
zero_lt_one'
instZeroLEOneClass
NeZero.one
posSemidef πŸ“–mathematicalMatrix.PosDefMatrix.PosSemidefβ€”eq_or_ne
Finsupp.sum_fun_zero
posSemidef_add πŸ“–mathematicalMatrix.PosSemidef
Matrix.PosDef
Matrix
Matrix.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”add_posSemidef
add_comm
smul πŸ“–mathematicalMatrix.PosDef
Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Matrix
Matrix.smul
Algebra.toSMul
Ring.toSemiring
β€”IsSelfAdjoint.smul
Matrix.instStarModule
IsSelfAdjoint.of_nonneg
LT.lt.le
Algebra.mul_smul_comm
Algebra.smul_mul_assoc
smul_pos
toQuadraticForm' πŸ“–mathematicalMatrix.PosDef
Real
Real.instRing
Real.partialOrder
instStarRingReal
QuadraticMap.PosDef
CommRing.toCommSemiring
Real.commRing
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
CommSemiring.toSemiring
Semiring.toModule
Matrix.toQuadraticMap'
β€”Matrix.toLinearMapβ‚‚'_apply'
dotProduct_mulVec_pos
trace_pos πŸ“–mathematicalMatrix.PosDefPreorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Matrix.trace
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”Finset.sum_pos
diag_pos
Finset.univ_nonempty
transpose πŸ“–mathematicalMatrix.PosDef
CommRing.toRing
Matrix.transposeβ€”Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Matrix.IsHermitian.transpose
Finsupp.sum_comm
star_zero
Finsupp.sum_mapRange_index
MulZeroClass.zero_mul
Finsupp.sum_fun_zero
star_star
transpose_iff πŸ“–mathematicalβ€”Matrix.PosDef
CommRing.toRing
Matrix.transpose
β€”Matrix.transpose_transpose
transpose

Matrix.PosSemidef

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalMatrix.PosSemidefMatrix
Matrix.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Matrix.IsHermitian.add
isHermitian
mul_add
Distrib.leftDistribClass
add_mul
Distrib.rightDistribClass
Finsupp.sum_add
add_nonneg
conjTranspose πŸ“–mathematicalMatrix.PosSemidefMatrix.conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
StarRing.toStarAddMonoid
β€”β€”
conjTranspose_mul_mul_same πŸ“–mathematicalMatrix.PosSemidefMatrix
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NonUnitalNonAssocSemiring.toAddCommMonoid
Matrix.conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”of_dotProduct_mulVec_nonneg
Matrix.isHermitian_conjTranspose_mul_mul
Matrix.dotProduct_mulVec
Matrix.star_mulVec
Matrix.vecMul_vecMul
dotProduct_mulVec_nonneg
diag_nonneg πŸ“–mathematicalMatrix.PosSemidefPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Finsupp.sum_single_index
MulZeroClass.mul_zero
mul_one
star_zero
MulZeroClass.zero_mul
star_one
one_mul
diagonal πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Matrix.PosSemidef
Matrix.diagonal
β€”Matrix.isHermitian_diagonal_of_self_adjoint
IsSelfAdjoint.of_nonneg
Finsupp.sum_nonneg
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
StarOrderedRing.toIsOrderedAddMonoid
MulZeroClass.mul_zero
ite_mul
MulZeroClass.zero_mul
star_left_conjugate_nonneg
dotProduct_mulVec_nonneg πŸ“–mathematicalMatrix.PosSemidefPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
dotProduct
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocSemiring.toAddCommMonoid
Star.star
Pi.instStarForall
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
Matrix.mulVec
β€”Matrix.posSemidef_iff_dotProduct_mulVec
intCast πŸ“–mathematicalβ€”Matrix.PosSemidef
Matrix
Matrix.instIntCastOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”Matrix.isHermitian_intCast
Finsupp.sum_nonneg
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
StarOrderedRing.toIsOrderedAddMonoid
eq_or_ne
Matrix.diagonal_apply_eq
IsOrderedAddMonoid.toAddLeftMono
instZeroLEOneClass
Matrix.diagonal_apply_ne
MulZeroClass.mul_zero
MulZeroClass.zero_mul
inv πŸ“–mathematicalMatrix.PosSemidef
CommRing.toRing
Matrix
Matrix.inv
β€”conjTranspose
conjTranspose_mul_mul_same
Finite.of_fintype
Matrix.conjTranspose_conjTranspose
Matrix.mul_nonsing_inv_cancel_right
Matrix.nonsing_inv_apply_not_isUnit
zero
isHermitian πŸ“–mathematicalMatrix.PosSemidefMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
StarRing.toStarAddMonoid
β€”β€”
mul_mul_conjTranspose_same πŸ“–mathematicalMatrix.PosSemidefMatrix
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NonUnitalNonAssocSemiring.toAddCommMonoid
Matrix.conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
StarRing.toStarAddMonoid
β€”Matrix.conjTranspose_conjTranspose
conjTranspose_mul_mul_same
natCast πŸ“–mathematicalβ€”Matrix.PosSemidef
Matrix
Matrix.instNatCastOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Matrix.isHermitian_natCast
Finsupp.sum_nonneg
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
StarOrderedRing.toIsOrderedAddMonoid
eq_or_ne
Matrix.diagonal_apply_eq
IsOrderedAddMonoid.toAddLeftMono
instZeroLEOneClass
Matrix.diagonal_apply_ne
MulZeroClass.mul_zero
MulZeroClass.zero_mul
ofNat πŸ“–mathematicalβ€”Matrix.PosSemidefβ€”natCast
of_dotProduct_mulVec_nonneg πŸ“–mathematicalMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
StarRing.toStarAddMonoid
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
dotProduct
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Star.star
Pi.instStarForall
Matrix.mulVec
Matrix.PosSemidefβ€”Matrix.posSemidef_iff_dotProduct_mulVec
one πŸ“–mathematicalβ€”Matrix.PosSemidef
Matrix
Matrix.one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Matrix.isHermitian_one
Finsupp.sum_nonneg
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
StarOrderedRing.toIsOrderedAddMonoid
eq_or_ne
Matrix.one_apply_eq
mul_one
Matrix.one_apply_ne
MulZeroClass.mul_zero
MulZeroClass.zero_mul
pow πŸ“–mathematicalMatrix.PosSemidefMatrix
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Ring.toSemiring
β€”one
pow_one
pow_succ
pow_succ'
Matrix.IsHermitian.eq
isHermitian
mul_mul_conjTranspose_same
Finite.of_fintype
smul πŸ“–mathematicalMatrix.PosSemidef
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Matrix
Matrix.smul
Algebra.toSMul
Ring.toSemiring
β€”IsSelfAdjoint.smul
Matrix.instStarModule
IsSelfAdjoint.of_nonneg
Algebra.mul_smul_comm
Algebra.smul_mul_assoc
smul_nonneg
submatrix πŸ“–mathematicalMatrix.PosSemidefMatrix.submatrixβ€”Matrix.IsHermitian.submatrix
Finsupp.sum_mapDomain_index
MulZeroClass.mul_zero
mul_add
Distrib.leftDistribClass
star_zero
MulZeroClass.zero_mul
Finsupp.sum_fun_zero
StarAddMonoid.star_add
add_mul
Distrib.rightDistribClass
Finsupp.sum_add
trace_nonneg πŸ“–mathematicalMatrix.PosSemidefPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Matrix.trace
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”Fintype.sum_nonneg
diag_nonneg
transpose πŸ“–mathematicalMatrix.PosSemidef
CommRing.toRing
Matrix.transposeβ€”Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Matrix.IsHermitian.transpose
Finsupp.sum_comm
star_zero
Finsupp.sum_mapRange_index
MulZeroClass.zero_mul
Finsupp.sum_fun_zero
star_star
zero πŸ“–mathematicalβ€”Matrix.PosSemidef
Matrix
Matrix.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Matrix.isHermitian_zero
MulZeroClass.mul_zero
MulZeroClass.zero_mul
Finsupp.sum_fun_zero
zpow πŸ“–mathematicalMatrix.PosSemidef
CommRing.toRing
Matrix
DivInvMonoid.toZPow
Matrix.instDivInvMonoid
β€”zpow_natCast
pow
Matrix.zpow_neg_natCast
inv

QuadraticForm

Theorems

NameKindAssumesProvesValidatesDepends On
posDef_of_toMatrix' πŸ“–mathematicalMatrix.PosDef
Real
Real.instRing
Real.partialOrder
instStarRingReal
QuadraticMap.toMatrix'
Real.commRing
invertibleTwo
Semifield.toDivisionSemiring
Field.toSemifield
Real.instField
IsStrictOrderedRing.toCharZero
DivisionSemiring.toSemiring
Real.instIsStrictOrderedRing
QuadraticMap.PosDef
Real.instCommSemiring
Pi.addCommMonoid
Real.instAddCommMonoid
Pi.Function.module
CommSemiring.toSemiring
Semiring.toModule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsScalarTower.to_smulCommClass
IsScalarTower.right
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
QuadraticMap.toQuadraticMap_associated
RingHomInvPair.ids
Algebra.to_smulCommClass
LinearEquiv.left_inv
Matrix.PosDef.toQuadraticForm'
posDef_toMatrix' πŸ“–mathematicalQuadraticMap.PosDef
Real
Real.instCommSemiring
Pi.addCommMonoid
Real.instAddCommMonoid
Pi.Function.module
CommSemiring.toSemiring
Semiring.toModule
Real.partialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Matrix.PosDef
Real.instRing
instStarRingReal
QuadraticMap.toMatrix'
Real.commRing
invertibleTwo
Semifield.toDivisionSemiring
Field.toSemifield
Real.instField
IsStrictOrderedRing.toCharZero
DivisionSemiring.toSemiring
Real.instIsStrictOrderedRing
β€”Matrix.PosDef.of_toQuadraticForm'
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
QuadraticMap.isSymm_toMatrix'
IsScalarTower.to_smulCommClass
IsScalarTower.right
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
RingHomInvPair.ids
Algebra.to_smulCommClass
LinearEquiv.left_inv
QuadraticMap.toQuadraticMap_associated

QuadraticMap

Definitions

NameCategoryTheorems
PosDef πŸ“–MathDef
8 mathmath: posDef_pi_iff, linMulLinSelfPosDef, posDef_of_nonneg, posDef_prod_iff, Matrix.PosDef.toQuadraticForm', QuadraticForm.posDef_of_toMatrix', posDef_iff_nonneg, RootPairing.posRootForm_rootFormIn_posDef

---

← Back to Index