Documentation Verification Report

SpecialLinearGroup

πŸ“ Source: Mathlib/LinearAlgebra/Matrix/SpecialLinearGroup.lean

Statistics

MetricCount
DefinitionsSpecialLinearGroup, center_equiv_rootsOfUnity, center_equiv_rootsOfUnity', hasCoeToMatrix, hasInv, hasMul, hasOne, instCoeFun, instCoeInt, instFintypeOfDecidableEq, instGroup, instHasDistribNeg, instInhabited, instNeg, instPowNat, map, monoid, toLin', transpose, Β«term_α΅€Β», Β«termSL(_,_)»»), S, T
23
Theoremsexists_SL2_col, exists_SL2_row, mulVecSL, vecMulSL, SL2_inv_expl, SL2_inv_expl_det, center_eq_bot_of_subsingleton, center_equiv_rootsOfUnity'_apply, center_equiv_rootsOfUnity'_symm_apply_coe_coe, coe_int_neg, coe_inv, coe_matrix_coe, coe_mk, coe_mul, coe_neg, coe_one, coe_pow, coe_transpose, det_coe, det_ne_zero, eq_scalar_center_equiv_rootsOfUnity, ext, ext_iff, fin_two_exists_eq_mk_of_apply_zero_one_eq_zero, fin_two_induction, instFinite, isCoprime_col, isCoprime_row, map_apply_coe, map_intCast_inj, map_intCast_injective, mem_center_iff, row_ne_zero, scalar_eq_coe_self_center, scalar_eq_self_of_mem_center, subsingleton_of_subsingleton, toLin'_apply, toLin'_injective, toLin'_symm_apply, toLin'_symm_to_linearMap, toLin'_to_linearMap, S_mul_S_eq, T_S_rel, T_inv_mul_apply_one, T_mul_apply_one, T_pow_mul_apply_one, coe_S, coe_T, coe_T_inv, coe_T_zpow
50
Total73

IsCoprime

Theorems

NameKindAssumesProvesValidatesDepends On
exists_SL2_col πŸ“–mathematicalIsCoprime
CommRing.toCommSemiring
Matrix
Matrix.det
Fin.fintype
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Matrix.det_fin_two_of
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
exists_SL2_row πŸ“–mathematicalIsCoprime
CommRing.toCommSemiring
Matrix
Matrix.det
Fin.fintype
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Matrix.det_fin_two_of
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_gt
mulVecSL πŸ“–mathematicalIsCoprime
CommRing.toCommSemiring
Matrix.mulVec
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Fin.fintype
Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”vecMulSL
vecMulSL πŸ“–mathematicalIsCoprime
CommRing.toCommSemiring
Matrix.vecMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Fin.fintype
Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”exists_SL2_row
Fintype.complete
Matrix.SpecialLinearGroup.isCoprime_row

Matrix

Definitions

NameCategoryTheorems
SpecialLinearGroup πŸ“–CompOp
195 mathmath: CongruenceSubgroup.Gamma_zero_bot, ModularForm.mul_slash_SL2, ModularGroup.SLOnGLPos_smul_apply, SpecialLinearGroup.center_equiv_rootsOfUnity'_apply, SpecialLinearGroup.map_mapGL, SpecialLinearGroup.continuous_toGL, Subgroup.instHasDetOneRangeSpecialLinearGroupGeneralLinearGroupMapGL, CongruenceSubgroup.Gamma_mem', SpecialLinearGroup.coeToGL_det, Subgroup.instHasDetOneMapSpecialLinearGroupGeneralLinearGroupToGL, SpecialLinearGroup.toGLPos_injective, CongruenceSubgroup.instFiniteIndexGamma, SpecialLinearGroup.topologicalGroup, CongruenceSubgroup.exists_Gamma_le_conj', ModularForm.SL_slash, CongruenceSubgroup.conjGL_coe, CongruenceSubgroup.mem_Gamma_one, UpperHalfPlane.specialLinearGroup_apply, ModularGroup.one_lt_normSq_T_zpow_smul, ModularGroup.bottom_row_surj, CongruenceSubgroup.strictPeriods_Gamma0, SpecialLinearGroup.center_equiv_rootsOfUnity'_symm_apply_coe_coe, CongruenceSubgroup.Gamma_normal, SpecialLinearGroup.map_intCast_injective, jacobiTheta_T_sq_smul, ModularForm.levelOne_neg_weight_rank_zero, Subgroup.IsArithmetic.is_commensurable, ModularGroup.sl_moeb, SpecialLinearGroup.center_eq_bot_of_subsingleton, SpecialLinearGroup.coe_int_neg, EisensteinSeries.E2_slash_action, SpecialLinearGroup.centerCongr_toLin_equiv_trans_centerEquivRootsOfUnity_eq, ModularGroup.coe_T_zpow_smul_eq, CongruenceSubgroup.exists_Gamma_le_conj, EisensteinSeries.G2_slash_action, ModularGroup.g_eq_of_c_eq_one, Subgroup.instIsArithmeticRangeSpecialLinearGroupFinOfNatNatIntGeneralLinearGroupRealMapGL, SpecialLinearGroup.isClosedEmbedding_toGL, SpecialLinearGroup.coe_one, ModularGroup.tendsto_abs_re_smul, CongruenceSubgroup.Gamma1_mem', SpecialLinearGroup.instFinite, Subgroup.instIsArithmeticMapSpecialLinearGroupFinOfNatNatIntGeneralLinearGroupRealMapGLOfFiniteIndex, SpecialLinearGroup.toLin'_symm_to_linearMap, ModularGroup.exists_max_im, Subgroup.IsArithmetic.isCusp_iff_isCusp_SL2Z, CongruenceSubgroup.instFiniteIndexGamma1, isCusp_SL2Z_iff', ModularGroup.denom_apply, FixedDetMatrices.reduce_of_pos, ModularGroup.im_T_smul, SpecialLinearGroup.map_apply_coe, FixedDetMatrices.T_S_rel_smul, CongruenceSubgroup.Gamma_one_top, SpecialLinearGroup.instDiscreteTopology, EisensteinSeries.G2_S_transform, SpecialLinearGroup.mapGL_injective, ModularGroup.SL_to_GL_tower, ModularFormClass.one_mem_strictPeriods_SL2Z, ModularGroup.T_mul_apply_one, SpecialLinearGroup.mapGL_inj, jacobiTheta_S_smul, ModularForm.levelOne_weight_zero_rank_one, ModularGroup.re_T_smul, CongruenceSubgroup.strictWidthInfty_Gamma0, CongruenceSubgroup.Gamma_cong_eq_self, ModularGroup.coe_T_inv, ModularGroup.T_inv_mul_apply_one, SpecialLinearGroup.isClosedEmbedding_mapGLInt, Subgroup.IsArithmetic.isFiniteRelIndexSL, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_ne_zero, UpperHalfPlane.modular_S_smul, ModularGroup.re_T_inv_smul, EisensteinSeries.D2_inv, CongruenceSubgroup.isArithmetic_conj_SL2Z, EisensteinSeries.q_expansion_riemannZeta, ModularGroup.denom_S, SpecialLinearGroup.subsingleton_of_subsingleton, SpecialLinearGroup.isInducing_mapGL, ModularGroup.normSq_S_smul_lt_one, ModularGroup.T_pow_mul_apply_one, ModularGroup.exists_row_one_eq_and_min_re, SpecialLinearGroup.scalar_eq_coe_self_center, ModularGroup.re_T_zpow_smul, CuspForm.coe_translate, SpecialLinearGroup.SL2Z_generators, ModularGroup.im_lt_im_S_smul, Subgroup.isArithmetic_iff_finiteIndex, SpecialLinearGroup.toGL_injective, ModularGroup.im_T_zpow_smul, EisensteinSeries.isBoundedAtImInfty_eisensteinSeries_SIF, EisensteinSeries.vecMul_SL2_mem_gammaSet, isCusp_SL2Z_iff, ModularForm.slash_action_eq'_iff, surjective_cosetToCuspOrbit, CongruenceSubgroup.strictWidthInfty_Gamma1, SpecialLinearGroup.toLin_equiv.symm_toLinearMap_eq, SpecialLinearGroup.SL2_inv_expl, EisensteinSeries.eisensteinSeries_SIF_apply, UpperHalfPlane.instIsIsometricSMulSpecialLinearGroupFinOfNatNatReal, SpecialLinearGroup.coe_inv, CongruenceSubgroup.finiteIndex_conjGL, SpecialLinearGroup.range_toGL, ModularGroup.exists_one_half_le_im_smul, CongruenceSubgroup.instFiniteIndexGamma0, SpecialLinearGroup.isEmbedding_toGL, SpecialLinearGroup.coe_GLPos_neg, SpecialLinearGroup.coe_pow, UpperHalfPlane.petersson_slash_SL, CongruenceSubgroup.ModularGroup_T_pow_mem_Gamma, ModularForm.SL_slash_def, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_eq_zero, CongruenceSubgroup.strictPeriods_Gamma1, CongruenceSubgroup.strictWidthInfty_Gamma, UpperHalfPlane.ModularGroup_T_zpow_mem_verticalStrip, EisensteinSeries.q_expansion_bernoulli, UpperHalfPlane.coe_specialLinearGroup_apply, EisensteinSeries.D2_one, CongruenceSubgroup.Gamma1_in_Gamma0, CongruenceSubgroup.Gamma1_mem, ModularGroup.im_smul_eq_div_normSq, SpecialLinearGroup.coe_GL_coe_matrix, SpecialLinearGroup.eq_scalar_center_equiv_rootsOfUnity, CongruenceSubgroup.mem_conjGL, SpecialLinearGroup.map_intCast_inj, SpecialLinearGroup.coe_to_GLPos_to_GL_det, SpecialLinearGroup.toLin'_to_linearMap, EisensteinSeries.tendsto_double_sum_S_act, CongruenceSubgroup.strictPeriods_Gamma, ModularGroup.tendsto_lcRow0, cosetToCuspOrbit_apply_mk, OnePoint.exists_mem_SL2, SL_reduction_mod_hom_val, SlashInvariantForm.slash_S_apply, ModularGroup.coe_one, CongruenceSubgroup.Gamma1_to_Gamma0_mem, Subgroup.strictPeriods_SL2Z, CongruenceSubgroup.mem_conjGL', FixedDetMatrices.smul_def, ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le, ModularGroup.T_S_rel, SpecialLinearGroup.toLin_equiv.toLinearMap_eq, FixedDetMatrices.reduce_of_not_pos, SpecialLinearGroup.coe_GLPos_coe_GL_coe_matrix, SlashInvariantForm.vAdd_width_periodic, ModularGroup.exists_smul_mem_fd, ModularFormClass.bdd_at_infty_slash, CuspFormClass.zero_at_infty_slash, CongruenceSubgroup.conj_cong_is_cong, ModularForm.is_invariant_one', EisensteinSeries.eisensteinSeriesSIF_apply, ModularGroup.im_T_inv_smul, SpecialLinearGroup.coe_neg, UpperHalfPlane.modular_T_zpow_smul, SpecialLinearGroup.toLin'_injective, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformlyOn, CongruenceSubgroup.IsCongruenceSubgroup.finiteIndex, SpecialLinearGroup.coe_matrix_coe, FixedDetMatrices.smul_coe, SpecialLinearGroup.mapGL_coe_matrix, ModularForm.is_invariant_const, Subgroup.IsArithmetic.finiteIndex_comap, SpecialLinearGroup.det_mapGL, ModularForm.SL_slash_apply, SpecialLinearGroup.discreteSpecialLinearGroupIntRange, EisensteinSeries.eisSummand_SL2_apply, EisensteinSeries.eisensteinSeries_SIF_MDifferentiable, SpecialLinearGroup.toLin'_symm_apply, ModularGroup.coe_T_zpow, EisensteinSeries.eisensteinSeries_slash_apply, Subgroup.instHasDetOneMapSpecialLinearGroupGeneralLinearGroupMapGL, CongruenceSubgroup.Gamma_mem, EisensteinSeries.eisensteinSeriesSIF_mdifferentiable, SpecialLinearGroup.coe_mul, ModularGroup.coeHom_apply, Subgroup.strictWidthInfty_SL2Z, SpecialLinearGroup.isInducing_toGL, ModularGroup.SL_neg_smul, FixedDetMatrices.reps_one_id, ModularForm.is_invariant_one, EisensteinSeries.tsum_symmetricIco_tsum_eq_S_act, EisensteinSeries.D2_mul, ModularGroup.exists_eq_T_zpow_of_c_eq_zero, UpperHalfPlane.modular_T_smul, SpecialLinearGroup.toGL_inj, ModularGroup.smul_eq_lcRow0_add, SpecialLinearGroup.toLin'_apply, ModularForm.SL_smul_slash, SpecialLinearGroup.mem_center_iff, SpecialLinearGroup.isEmbedding_mapGL, SlashInvariantForm.T_zpow_width_invariant, EisensteinSeries.isBoundedAtImInfty_eisensteinSeriesSIF, CongruenceSubgroup.Gamma0_mem, EisensteinSeries.G2_T_transform, FixedDetMatrices.S_smul_four

Matrix.SpecialLinearGroup

Definitions

NameCategoryTheorems
center_equiv_rootsOfUnity πŸ“–CompOp
2 mathmath: SpecialLinearGroup.centerCongr_toLin_equiv_trans_centerEquivRootsOfUnity_eq, eq_scalar_center_equiv_rootsOfUnity
center_equiv_rootsOfUnity' πŸ“–CompOp
2 mathmath: center_equiv_rootsOfUnity'_apply, center_equiv_rootsOfUnity'_symm_apply_coe_coe
hasCoeToMatrix πŸ“–CompOpβ€”
hasInv πŸ“–CompOp
13 mathmath: CongruenceSubgroup.conjGL_coe, toLin'_symm_to_linearMap, FixedDetMatrices.T_S_rel_smul, ModularGroup.coe_T_inv, ModularGroup.T_inv_mul_apply_one, ModularGroup.re_T_inv_smul, EisensteinSeries.D2_inv, SL2_inv_expl, coe_inv, cosetToCuspOrbit_apply_mk, ModularGroup.T_S_rel, ModularGroup.im_T_inv_smul, toLin'_symm_apply
hasMul πŸ“–CompOp
8 mathmath: ModularGroup.g_eq_of_c_eq_one, ModularGroup.T_mul_apply_one, ModularGroup.T_inv_mul_apply_one, ModularGroup.T_pow_mul_apply_one, toLin_equiv.symm_toLinearMap_eq, toLin_equiv.toLinearMap_eq, coe_mul, EisensteinSeries.D2_mul
hasOne πŸ“–CompOp
5 mathmath: CongruenceSubgroup.Gamma_mem', coe_one, EisensteinSeries.D2_one, ModularGroup.coe_one, FixedDetMatrices.reps_one_id
instCoeFun πŸ“–CompOpβ€”
instCoeInt πŸ“–CompOpβ€”
instFintypeOfDecidableEq πŸ“–CompOpβ€”
instGroup πŸ“–CompOp
83 mathmath: CongruenceSubgroup.Gamma_zero_bot, center_equiv_rootsOfUnity'_apply, Subgroup.instHasDetOneRangeSpecialLinearGroupGeneralLinearGroupMapGL, CongruenceSubgroup.Gamma_mem', Subgroup.instHasDetOneMapSpecialLinearGroupGeneralLinearGroupToGL, CongruenceSubgroup.instFiniteIndexGamma, topologicalGroup, CongruenceSubgroup.exists_Gamma_le_conj', CongruenceSubgroup.conjGL_coe, CongruenceSubgroup.mem_Gamma_one, ModularGroup.one_lt_normSq_T_zpow_smul, CongruenceSubgroup.strictPeriods_Gamma0, center_equiv_rootsOfUnity'_symm_apply_coe_coe, CongruenceSubgroup.Gamma_normal, ModularForm.levelOne_neg_weight_rank_zero, Subgroup.IsArithmetic.is_commensurable, center_eq_bot_of_subsingleton, SpecialLinearGroup.centerCongr_toLin_equiv_trans_centerEquivRootsOfUnity_eq, ModularGroup.coe_T_zpow_smul_eq, CongruenceSubgroup.exists_Gamma_le_conj, ModularGroup.g_eq_of_c_eq_one, Subgroup.instIsArithmeticRangeSpecialLinearGroupFinOfNatNatIntGeneralLinearGroupRealMapGL, CongruenceSubgroup.Gamma1_mem', Subgroup.instIsArithmeticMapSpecialLinearGroupFinOfNatNatIntGeneralLinearGroupRealMapGLOfFiniteIndex, Subgroup.IsArithmetic.isCusp_iff_isCusp_SL2Z, CongruenceSubgroup.instFiniteIndexGamma1, isCusp_SL2Z_iff', FixedDetMatrices.reduce_of_pos, CongruenceSubgroup.Gamma_one_top, ModularFormClass.one_mem_strictPeriods_SL2Z, ModularForm.levelOne_weight_zero_rank_one, CongruenceSubgroup.strictWidthInfty_Gamma0, CongruenceSubgroup.Gamma_cong_eq_self, Subgroup.IsArithmetic.isFiniteRelIndexSL, CongruenceSubgroup.isArithmetic_conj_SL2Z, EisensteinSeries.q_expansion_riemannZeta, ModularGroup.T_pow_mul_apply_one, scalar_eq_coe_self_center, ModularGroup.re_T_zpow_smul, SpecialLinearGroup.SL2Z_generators, Subgroup.isArithmetic_iff_finiteIndex, ModularGroup.im_T_zpow_smul, EisensteinSeries.isBoundedAtImInfty_eisensteinSeries_SIF, isCusp_SL2Z_iff, surjective_cosetToCuspOrbit, CongruenceSubgroup.strictWidthInfty_Gamma1, EisensteinSeries.eisensteinSeries_SIF_apply, CongruenceSubgroup.finiteIndex_conjGL, CongruenceSubgroup.instFiniteIndexGamma0, CongruenceSubgroup.ModularGroup_T_pow_mem_Gamma, CongruenceSubgroup.strictPeriods_Gamma1, CongruenceSubgroup.strictWidthInfty_Gamma, UpperHalfPlane.ModularGroup_T_zpow_mem_verticalStrip, EisensteinSeries.q_expansion_bernoulli, CongruenceSubgroup.Gamma1_in_Gamma0, CongruenceSubgroup.Gamma1_mem, eq_scalar_center_equiv_rootsOfUnity, CongruenceSubgroup.mem_conjGL, CongruenceSubgroup.strictPeriods_Gamma, cosetToCuspOrbit_apply_mk, CongruenceSubgroup.Gamma1_to_Gamma0_mem, Subgroup.strictPeriods_SL2Z, CongruenceSubgroup.mem_conjGL', FixedDetMatrices.reduce_of_not_pos, SlashInvariantForm.vAdd_width_periodic, CongruenceSubgroup.conj_cong_is_cong, EisensteinSeries.eisensteinSeriesSIF_apply, UpperHalfPlane.modular_T_zpow_smul, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformlyOn, CongruenceSubgroup.IsCongruenceSubgroup.finiteIndex, Subgroup.IsArithmetic.finiteIndex_comap, discreteSpecialLinearGroupIntRange, EisensteinSeries.eisensteinSeries_SIF_MDifferentiable, ModularGroup.coe_T_zpow, Subgroup.instHasDetOneMapSpecialLinearGroupGeneralLinearGroupMapGL, CongruenceSubgroup.Gamma_mem, EisensteinSeries.eisensteinSeriesSIF_mdifferentiable, Subgroup.strictWidthInfty_SL2Z, ModularGroup.exists_eq_T_zpow_of_c_eq_zero, mem_center_iff, SlashInvariantForm.T_zpow_width_invariant, EisensteinSeries.isBoundedAtImInfty_eisensteinSeriesSIF, CongruenceSubgroup.Gamma0_mem
instHasDistribNeg πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instNeg πŸ“–CompOp
4 mathmath: coe_int_neg, coe_GLPos_neg, coe_neg, ModularGroup.SL_neg_smul
instPowNat πŸ“–CompOp
1 mathmath: coe_pow
map πŸ“–CompOp
27 mathmath: CongruenceSubgroup.Gamma_mem', ModularForm.SL_slash, CongruenceSubgroup.conjGL_coe, map_intCast_injective, ModularGroup.sl_moeb, coe_int_neg, ModularGroup.denom_apply, map_apply_coe, ModularGroup.denom_S, CuspForm.coe_translate, EisensteinSeries.vecMul_SL2_mem_gammaSet, ModularForm.SL_slash_def, SlashInvariantForm.slash_action_eqn_SL'', ModularGroup.im_smul_eq_div_normSq, CongruenceSubgroup.mem_conjGL, map_intCast_inj, ModularGroup.tendsto_lcRow0, SL_reduction_mod_hom_val, CongruenceSubgroup.mem_conjGL', ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le, ModularForm.is_invariant_one', coe_matrix_coe, mapGL_coe_matrix, ModularForm.SL_slash_apply, EisensteinSeries.eisSummand_SL2_apply, EisensteinSeries.eisensteinSeries_slash_apply, ModularGroup.smul_eq_lcRow0_add
monoid πŸ“–CompOp
111 mathmath: ModularForm.mul_slash_SL2, map_mapGL, continuous_toGL, CongruenceSubgroup.Gamma_mem', coeToGL_det, OnePoint.isBoundedAt_iff_exists_SL2Z, toGLPos_injective, ModularForm.SL_slash, CongruenceSubgroup.conjGL_coe, UpperHalfPlane.specialLinearGroup_apply, ModularGroup.one_lt_normSq_T_zpow_smul, map_intCast_injective, jacobiTheta_T_sq_smul, OnePoint.isBoundedAt_iff_forall_SL2Z, ModularGroup.sl_moeb, coe_int_neg, OnePoint.isZeroAt_iff_exists_SL2Z, EisensteinSeries.E2_slash_action, ModularGroup.coe_T_zpow_smul_eq, CongruenceSubgroup.exists_Gamma_le_conj, EisensteinSeries.G2_slash_action, isClosedEmbedding_toGL, ModularGroup.tendsto_abs_re_smul, toLin'_symm_to_linearMap, ModularGroup.exists_max_im, isCusp_SL2Z_iff', ModularGroup.denom_apply, ModularGroup.im_T_smul, map_apply_coe, EisensteinSeries.G2_S_transform, mapGL_injective, ModularGroup.SL_to_GL_tower, mapGL_inj, jacobiTheta_S_smul, ModularGroup.re_T_smul, isClosedEmbedding_mapGLInt, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_ne_zero, UpperHalfPlane.modular_S_smul, ModularGroup.re_T_inv_smul, EisensteinSeries.D2_inv, ModularGroup.denom_S, OnePoint.isZeroAt_iff_forall_SL2Z, isInducing_mapGL, ModularGroup.normSq_S_smul_lt_one, ModularGroup.exists_row_one_eq_and_min_re, ModularGroup.re_T_zpow_smul, CuspForm.coe_translate, ModularGroup.im_lt_im_S_smul, toGL_injective, ModularGroup.im_T_zpow_smul, EisensteinSeries.isBoundedAtImInfty_eisensteinSeries_SIF, EisensteinSeries.vecMul_SL2_mem_gammaSet, ModularForm.slash_action_eq'_iff, UpperHalfPlane.instIsIsometricSMulSpecialLinearGroupFinOfNatNatReal, range_toGL, ModularGroup.exists_one_half_le_im_smul, isEmbedding_toGL, coe_GLPos_neg, UpperHalfPlane.petersson_slash_SL, ModularForm.SL_slash_def, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_eq_zero, SlashInvariantForm.slash_action_eqn_SL'', UpperHalfPlane.ModularGroup_T_zpow_mem_verticalStrip, UpperHalfPlane.coe_specialLinearGroup_apply, ModularGroup.im_smul_eq_div_normSq, coe_GL_coe_matrix, CongruenceSubgroup.mem_conjGL, map_intCast_inj, coe_to_GLPos_to_GL_det, toLin'_to_linearMap, EisensteinSeries.tendsto_double_sum_S_act, ModularGroup.tendsto_lcRow0, cosetToCuspOrbit_apply_mk, OnePoint.exists_mem_SL2, SL_reduction_mod_hom_val, SlashInvariantForm.slash_S_apply, CongruenceSubgroup.mem_conjGL', ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le, ModularGroup.T_S_rel, coe_GLPos_coe_GL_coe_matrix, ModularGroup.exists_smul_mem_fd, ModularFormClass.bdd_at_infty_slash, CuspFormClass.zero_at_infty_slash, ModularForm.is_invariant_one', ModularGroup.im_T_inv_smul, UpperHalfPlane.modular_T_zpow_smul, toLin'_injective, coe_matrix_coe, mapGL_coe_matrix, ModularForm.is_invariant_const, det_mapGL, ModularForm.SL_slash_apply, EisensteinSeries.eisSummand_SL2_apply, toLin'_symm_apply, EisensteinSeries.eisensteinSeries_slash_apply, ModularGroup.coeHom_apply, isInducing_toGL, ModularGroup.SL_neg_smul, ModularForm.is_invariant_one, EisensteinSeries.tsum_symmetricIco_tsum_eq_S_act, EisensteinSeries.D2_mul, ModularGroup.exists_eq_T_zpow_of_c_eq_zero, UpperHalfPlane.modular_T_smul, toGL_inj, ModularGroup.smul_eq_lcRow0_add, toLin'_apply, ModularForm.SL_smul_slash, isEmbedding_mapGL, SlashInvariantForm.T_zpow_width_invariant, EisensteinSeries.isBoundedAtImInfty_eisensteinSeriesSIF, EisensteinSeries.G2_T_transform
toLin' πŸ“–CompOp
5 mathmath: toLin'_symm_to_linearMap, toLin'_to_linearMap, toLin'_injective, toLin'_symm_apply, toLin'_apply
transpose πŸ“–CompOp
1 mathmath: coe_transpose
Β«term_α΅€Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
SL2_inv_expl πŸ“–mathematicalβ€”Matrix.SpecialLinearGroup
Fin.fintype
hasInv
Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.vecCons
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
Matrix.vecEmpty
SL2_inv_expl_det
β€”ext
SL2_inv_expl_det
Matrix.adjugate_fin_two
coe_inv
Matrix.cons_val'
Matrix.cons_val_fin_one
SL2_inv_expl_det πŸ“–mathematicalβ€”Matrix.det
Fin.fintype
Matrix.vecCons
Matrix
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
Matrix.vecEmpty
β€”Matrix.det_fin_two
Matrix.cons_val'
Matrix.cons_val_fin_one
mul_comm
mul_neg
neg_mul
neg_neg
center_eq_bot_of_subsingleton πŸ“–mathematicalβ€”Subgroup.center
Matrix.SpecialLinearGroup
instGroup
Bot.bot
Subgroup
Subgroup.instBot
β€”eq_bot_iff
Subgroup.mem_bot
subsingleton_of_subsingleton
center_equiv_rootsOfUnity'_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
Matrix.SpecialLinearGroup
Subgroup
instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.center
Units
CommMonoid.toMonoid
CommRing.toCommMonoid
Units.instGroup
rootsOfUnity
Fintype.card
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
center_equiv_rootsOfUnity'
rootsOfUnity.mkOfPowEq
Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”
center_equiv_rootsOfUnity'_symm_apply_coe_coe πŸ“–mathematicalβ€”Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.SpecialLinearGroup
Subgroup
instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.center
DFunLike.coe
MulEquiv
Units
CommMonoid.toMonoid
CommRing.toCommMonoid
Units.instGroup
rootsOfUnity
Fintype.card
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
center_equiv_rootsOfUnity'
Matrix.smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Subgroup.instDistribMulActionSubtypeMem
Units.instDistribMulAction
Module.toDistribMulAction
Ring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
Matrix.one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
coe_int_neg πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Matrix.SpecialLinearGroup
Int.instCommRing
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
MonoidHom.instFunLike
map
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
instNeg
β€”RingHom.map_neg
coe_inv πŸ“–mathematicalβ€”Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.SpecialLinearGroup
hasInv
Matrix.adjugate
β€”β€”
coe_matrix_coe πŸ“–mathematicalβ€”Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DFunLike.coe
MonoidHom
Matrix.SpecialLinearGroup
Int.instCommRing
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
MonoidHom.instFunLike
map
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Matrix.map
RingHom
Semiring.toNonAssocSemiring
Int.instSemiring
NonAssocRing.toNonAssocSemiring
RingHom.instFunLike
β€”map_apply_coe
coe_mk πŸ“–mathematicalMatrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrixβ€”β€”
coe_mul πŸ“–mathematicalβ€”Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.SpecialLinearGroup
hasMul
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”β€”
coe_neg πŸ“–mathematicalβ€”Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.SpecialLinearGroup
instNeg
Matrix.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”β€”
coe_one πŸ“–mathematicalβ€”Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.SpecialLinearGroup
hasOne
Matrix.one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”
coe_pow πŸ“–mathematicalβ€”Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.SpecialLinearGroup
instPowNat
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”
coe_transpose πŸ“–mathematicalβ€”Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
transpose
Matrix.transpose
β€”β€”
det_coe πŸ“–mathematicalβ€”Matrix.det
Matrix
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”
det_ne_zero πŸ“–β€”β€”β€”β€”det_coe
NeZero.one
eq_scalar_center_equiv_rootsOfUnity πŸ“–mathematicalβ€”Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.SpecialLinearGroup
Subgroup
instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.center
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Matrix.nonAssocSemiring
RingHom.instFunLike
Matrix.scalar
Units.val
CommMonoid.toMonoid
CommRing.toCommMonoid
Units
Units.instGroup
rootsOfUnity
Fintype.card
MulEquiv
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
center_equiv_rootsOfUnity
β€”isEmpty_or_nonempty
Matrix.subsingleton_of_empty_right
center_equiv_rootsOfUnity'_apply
rootsOfUnity.val_mkOfPowEq_coe
scalar_eq_coe_self_center
ext πŸ“–β€”Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”ext_iff
ext_iff πŸ“–mathematicalβ€”Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Matrix.ext_iff
fin_two_exists_eq_mk_of_apply_zero_one_eq_zero πŸ“–mathematicalMatrix
Matrix.det
Fin.fintype
Field.toCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Matrix.vecCons
Matrix.vecEmpty
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
β€”fin_two_induction
Matrix.cons_val'
Matrix.cons_val_fin_one
sub_zero
MulZeroClass.mul_zero
left_ne_zero_of_mul_eq_one
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
eq_inv_of_mul_eq_one_right
fin_two_induction πŸ“–β€”Matrix
Matrix.det
Fin.fintype
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Matrix.vecCons
Matrix.vecEmpty
β€”β€”Matrix.det_fin_two
Matrix.ext
Fintype.complete
instFinite πŸ“–mathematicalβ€”Finite
Matrix.SpecialLinearGroup
β€”Subtype.finite
Matrix.instFinite
Finite.of_fintype
isCoprime_col πŸ“–mathematicalβ€”IsCoprime
CommRing.toCommSemiring
Matrix
Matrix.det
Fin.fintype
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Matrix.det_fin_two
det_coe
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
isCoprime_row πŸ“–mathematicalβ€”IsCoprime
CommRing.toCommSemiring
Matrix
Matrix.det
Fin.fintype
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Matrix.det_fin_two
det_coe
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
map_apply_coe πŸ“–mathematicalβ€”Matrix
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DFunLike.coe
MonoidHom
Matrix.SpecialLinearGroup
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
MonoidHom.instFunLike
map
RingHom
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
RingHom.mapMatrix
β€”β€”
map_intCast_inj πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Matrix.SpecialLinearGroup
Int.instCommRing
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
MonoidHom.instFunLike
map
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
β€”map_intCast_injective
map_intCast_injective πŸ“–mathematicalβ€”Matrix.SpecialLinearGroup
Int.instCommRing
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
MonoidHom.instFunLike
map
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
β€”β€”
mem_center_iff πŸ“–mathematicalβ€”Matrix.SpecialLinearGroup
Subgroup
instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.center
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Fintype.card
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DFunLike.coe
RingHom
Matrix
Semiring.toNonAssocSemiring
Matrix.nonAssocSemiring
RingHom.instFunLike
Matrix.scalar
Matrix.det
β€”isEmpty_or_nonempty
Fintype.card_eq_zero
pow_zero
center_eq_bot_of_subsingleton
IsEmpty.instSubsingleton
subsingleton_of_subsingleton
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
scalar_eq_self_of_mem_center
Matrix.det_diagonal
Finset.prod_const
Subgroup.mem_center_iff
Commute.symm
Matrix.scalar_commute
Commute.all
Subtype.val_injective
row_ne_zero πŸ“–β€”β€”β€”β€”det_ne_zero
Matrix.det_eq_zero_of_row_eq_zero
scalar_eq_coe_self_center πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Matrix
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Matrix.nonAssocSemiring
RingHom.instFunLike
Matrix.scalar
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.SpecialLinearGroup
Subgroup
instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.center
β€”scalar_eq_self_of_mem_center
scalar_eq_self_of_mem_center πŸ“–mathematicalMatrix.SpecialLinearGroup
Subgroup
instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.center
DFunLike.coe
RingHom
Matrix
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Matrix.nonAssocSemiring
RingHom.instFunLike
Matrix.scalar
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Matrix.mem_range_scalar_of_commute_transvectionStruct
Matrix.TransvectionStruct.det
Subgroup.mem_center_iff
Matrix.diagonal_apply_eq
subsingleton_of_subsingleton πŸ“–mathematicalβ€”Matrix.SpecialLinearGroupβ€”ext
isEmpty_or_nonempty
IsEmpty.false
Matrix.det_eq_elem_of_subsingleton
toLin'_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
MonoidHom
Matrix.SpecialLinearGroup
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearEquiv.automorphismGroup
MonoidHom.instFunLike
toLin'
LinearMap
NonAssocSemiring.toNonUnitalNonAssocSemiring
LinearMap.instFunLike
Matrix
Matrix.addCommMonoid
LinearMap.addCommMonoid
Matrix.module
LinearMap.module
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
Matrix.toLin'
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”RingHomInvPair.ids
toLin'_injective πŸ“–mathematicalβ€”Matrix.SpecialLinearGroup
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearEquiv.automorphismGroup
MonoidHom.instFunLike
toLin'
β€”RingHomInvPair.ids
Subtype.coe_injective
LinearEquiv.injective
Function.smulCommClass
Algebra.to_smulCommClass
LinearEquiv.toLinearMap_injective
toLin'_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
MonoidHom
Matrix.SpecialLinearGroup
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearEquiv.automorphismGroup
MonoidHom.instFunLike
toLin'
LinearMap
NonAssocSemiring.toNonUnitalNonAssocSemiring
LinearMap.instFunLike
Matrix
Matrix.addCommMonoid
LinearMap.addCommMonoid
Matrix.module
LinearMap.module
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
Matrix.toLin'
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
hasInv
β€”RingHomInvPair.ids
toLin'_symm_to_linearMap πŸ“–mathematicalβ€”LinearEquiv.toLinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
LinearEquiv.symm
DFunLike.coe
MonoidHom
Matrix.SpecialLinearGroup
LinearEquiv
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearEquiv.automorphismGroup
MonoidHom.instFunLike
toLin'
Matrix
LinearMap
NonAssocSemiring.toNonUnitalNonAssocSemiring
Matrix.addCommMonoid
LinearMap.addCommMonoid
Matrix.module
LinearMap.module
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Matrix.toLin'
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
hasInv
β€”RingHomInvPair.ids
toLin'_to_linearMap πŸ“–mathematicalβ€”LinearEquiv.toLinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
DFunLike.coe
MonoidHom
Matrix.SpecialLinearGroup
LinearEquiv
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearEquiv.automorphismGroup
MonoidHom.instFunLike
toLin'
Matrix
LinearMap
NonAssocSemiring.toNonUnitalNonAssocSemiring
Matrix.addCommMonoid
LinearMap.addCommMonoid
Matrix.module
LinearMap.module
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Matrix.toLin'
Matrix.det
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”RingHomInvPair.ids

MatrixGroups

Definitions

NameCategoryTheorems
Β«termSL(_,_)Β» πŸ“–Β» "API Documentation")CompOpβ€”

ModularGroup

Definitions

NameCategoryTheorems
S πŸ“–CompOp
19 mathmath: g_eq_of_c_eq_one, FixedDetMatrices.T_S_rel_smul, EisensteinSeries.D2_S, EisensteinSeries.G2_S_transform, jacobiTheta_S_smul, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_ne_zero, UpperHalfPlane.modular_S_smul, denom_S, normSq_S_smul_lt_one, SpecialLinearGroup.SL2Z_generators, im_lt_im_S_smul, EisensteinSeries.tendsto_double_sum_S_act, SlashInvariantForm.slash_S_apply, T_S_rel, FixedDetMatrices.reduce_of_not_pos, coe_S, S_mul_S_eq, EisensteinSeries.tsum_symmetricIco_tsum_eq_S_act, FixedDetMatrices.S_smul_four
T πŸ“–CompOp
29 mathmath: one_lt_normSq_T_zpow_smul, jacobiTheta_T_sq_smul, coe_T_zpow_smul_eq, g_eq_of_c_eq_one, FixedDetMatrices.reduce_of_pos, im_T_smul, FixedDetMatrices.T_S_rel_smul, T_mul_apply_one, re_T_smul, coe_T_inv, T_inv_mul_apply_one, re_T_inv_smul, T_pow_mul_apply_one, re_T_zpow_smul, SpecialLinearGroup.SL2Z_generators, im_T_zpow_smul, CongruenceSubgroup.ModularGroup_T_pow_mem_Gamma, UpperHalfPlane.ModularGroup_T_zpow_mem_verticalStrip, T_S_rel, FixedDetMatrices.reduce_of_not_pos, coe_T, im_T_inv_smul, UpperHalfPlane.modular_T_zpow_smul, coe_T_zpow, EisensteinSeries.D2_T, exists_eq_T_zpow_of_c_eq_zero, UpperHalfPlane.modular_T_smul, SlashInvariantForm.T_zpow_width_invariant, EisensteinSeries.G2_T_transform

Theorems

NameKindAssumesProvesValidatesDepends On
S_mul_S_eq πŸ“–mathematicalβ€”Matrix
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Fin.fintype
Int.instAddCommMonoid
Matrix.det
Int.instCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
S
Matrix.neg
Matrix.one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instRing
β€”Matrix.cons_mul
Matrix.vecMul_cons
zero_smul
Matrix.tail_cons
neg_smul
one_smul
Matrix.neg_cons
neg_zero
Matrix.neg_empty
add_zero
zero_add
Matrix.empty_mul
Equiv.symm_apply_apply
Matrix.eta_fin_two
T_S_rel πŸ“–mathematicalβ€”Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
SemigroupAction.toSMul
Monoid.toSemigroup
Matrix.SpecialLinearGroup.monoid
MulAction.toSemigroupAction
Monoid.toMulAction
S
T
Matrix.SpecialLinearGroup.hasInv
β€”Matrix.SpecialLinearGroup.ext
Fintype.complete
T_inv_mul_apply_one πŸ“–mathematicalβ€”Matrix
Matrix.det
Fin.fintype
Int.instCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.SpecialLinearGroup
Matrix.SpecialLinearGroup.hasMul
Matrix.SpecialLinearGroup.hasInv
T
β€”zpow_neg
zpow_one
T_pow_mul_apply_one
T_mul_apply_one πŸ“–mathematicalβ€”Matrix
Matrix.det
Fin.fintype
Int.instCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.SpecialLinearGroup
Matrix.SpecialLinearGroup.hasMul
T
β€”zpow_one
T_pow_mul_apply_one
T_pow_mul_apply_one πŸ“–mathematicalβ€”Matrix
Matrix.det
Fin.fintype
Int.instCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.SpecialLinearGroup
Matrix.SpecialLinearGroup.hasMul
DivInvMonoid.toZPow
Group.toDivInvMonoid
Matrix.SpecialLinearGroup.instGroup
T
β€”coe_T_zpow
Matrix.cons_mul
Matrix.empty_mul
Equiv.symm_apply_apply
Matrix.cons_val'
Finset.sum_congr
Fin.sum_univ_succ
one_mul
Finset.univ_unique
Matrix.cons_val_succ
Matrix.cons_val_fin_one
Finset.sum_singleton
MulZeroClass.zero_mul
zero_add
coe_S πŸ“–mathematicalβ€”Matrix
Matrix.det
Fin.fintype
Int.instCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
S
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Matrix.vecCons
Matrix.vecEmpty
β€”β€”
coe_T πŸ“–mathematicalβ€”Matrix
Matrix.det
Fin.fintype
Int.instCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
T
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Matrix.vecCons
Matrix.vecEmpty
β€”β€”
coe_T_inv πŸ“–mathematicalβ€”Matrix
Matrix.det
Fin.fintype
Int.instCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.SpecialLinearGroup
Matrix.SpecialLinearGroup.hasInv
T
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Matrix.vecCons
Matrix.vecEmpty
β€”Matrix.adjugate_fin_two
Matrix.cons_val'
Matrix.cons_val_fin_one
neg_zero
coe_T_zpow πŸ“–mathematicalβ€”Matrix
Matrix.det
Fin.fintype
Int.instCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.SpecialLinearGroup
DivInvMonoid.toZPow
Group.toDivInvMonoid
Matrix.SpecialLinearGroup.instGroup
T
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Matrix.vecCons
Matrix.vecEmpty
β€”Int.induction_on
zpow_zero
Matrix.SpecialLinearGroup.coe_one
Matrix.one_fin_two
zpow_add
zpow_one
Matrix.mul_fin_two
mul_one
add_comm
zpow_sub
coe_T_inv
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt

---

← Back to Index