| Name | Category | Theorems |
center_equiv_rootsOfUnity π | CompOp | 2 mathmath: SpecialLinearGroup.centerCongr_toLin_equiv_trans_centerEquivRootsOfUnity_eq, eq_scalar_center_equiv_rootsOfUnity
|
center_equiv_rootsOfUnity' π | CompOp | 2 mathmath: center_equiv_rootsOfUnity'_apply, center_equiv_rootsOfUnity'_symm_apply_coe_coe
|
hasCoeToMatrix π | CompOp | β |
hasInv π | CompOp | 13 mathmath: CongruenceSubgroup.conjGL_coe, toLin'_symm_to_linearMap, FixedDetMatrices.T_S_rel_smul, ModularGroup.coe_T_inv, ModularGroup.T_inv_mul_apply_one, ModularGroup.re_T_inv_smul, EisensteinSeries.D2_inv, SL2_inv_expl, coe_inv, cosetToCuspOrbit_apply_mk, ModularGroup.T_S_rel, ModularGroup.im_T_inv_smul, toLin'_symm_apply
|
hasMul π | CompOp | 8 mathmath: ModularGroup.g_eq_of_c_eq_one, ModularGroup.T_mul_apply_one, ModularGroup.T_inv_mul_apply_one, ModularGroup.T_pow_mul_apply_one, toLin_equiv.symm_toLinearMap_eq, toLin_equiv.toLinearMap_eq, coe_mul, EisensteinSeries.D2_mul
|
hasOne π | CompOp | 5 mathmath: CongruenceSubgroup.Gamma_mem', coe_one, EisensteinSeries.D2_one, ModularGroup.coe_one, FixedDetMatrices.reps_one_id
|
instCoeFun π | CompOp | β |
instCoeInt π | CompOp | β |
instFintypeOfDecidableEq π | CompOp | β |
instGroup π | CompOp | 83 mathmath: CongruenceSubgroup.Gamma_zero_bot, center_equiv_rootsOfUnity'_apply, Subgroup.instHasDetOneRangeSpecialLinearGroupGeneralLinearGroupMapGL, CongruenceSubgroup.Gamma_mem', Subgroup.instHasDetOneMapSpecialLinearGroupGeneralLinearGroupToGL, CongruenceSubgroup.instFiniteIndexGamma, topologicalGroup, CongruenceSubgroup.exists_Gamma_le_conj', CongruenceSubgroup.conjGL_coe, CongruenceSubgroup.mem_Gamma_one, ModularGroup.one_lt_normSq_T_zpow_smul, CongruenceSubgroup.strictPeriods_Gamma0, center_equiv_rootsOfUnity'_symm_apply_coe_coe, CongruenceSubgroup.Gamma_normal, ModularForm.levelOne_neg_weight_rank_zero, Subgroup.IsArithmetic.is_commensurable, center_eq_bot_of_subsingleton, SpecialLinearGroup.centerCongr_toLin_equiv_trans_centerEquivRootsOfUnity_eq, ModularGroup.coe_T_zpow_smul_eq, CongruenceSubgroup.exists_Gamma_le_conj, ModularGroup.g_eq_of_c_eq_one, Subgroup.instIsArithmeticRangeSpecialLinearGroupFinOfNatNatIntGeneralLinearGroupRealMapGL, CongruenceSubgroup.Gamma1_mem', Subgroup.instIsArithmeticMapSpecialLinearGroupFinOfNatNatIntGeneralLinearGroupRealMapGLOfFiniteIndex, Subgroup.IsArithmetic.isCusp_iff_isCusp_SL2Z, CongruenceSubgroup.instFiniteIndexGamma1, isCusp_SL2Z_iff', FixedDetMatrices.reduce_of_pos, CongruenceSubgroup.Gamma_one_top, ModularFormClass.one_mem_strictPeriods_SL2Z, ModularForm.levelOne_weight_zero_rank_one, CongruenceSubgroup.strictWidthInfty_Gamma0, CongruenceSubgroup.Gamma_cong_eq_self, Subgroup.IsArithmetic.isFiniteRelIndexSL, CongruenceSubgroup.isArithmetic_conj_SL2Z, EisensteinSeries.q_expansion_riemannZeta, ModularGroup.T_pow_mul_apply_one, scalar_eq_coe_self_center, ModularGroup.re_T_zpow_smul, SpecialLinearGroup.SL2Z_generators, Subgroup.isArithmetic_iff_finiteIndex, ModularGroup.im_T_zpow_smul, EisensteinSeries.isBoundedAtImInfty_eisensteinSeries_SIF, isCusp_SL2Z_iff, surjective_cosetToCuspOrbit, CongruenceSubgroup.strictWidthInfty_Gamma1, EisensteinSeries.eisensteinSeries_SIF_apply, CongruenceSubgroup.finiteIndex_conjGL, CongruenceSubgroup.instFiniteIndexGamma0, CongruenceSubgroup.ModularGroup_T_pow_mem_Gamma, CongruenceSubgroup.strictPeriods_Gamma1, CongruenceSubgroup.strictWidthInfty_Gamma, UpperHalfPlane.ModularGroup_T_zpow_mem_verticalStrip, EisensteinSeries.q_expansion_bernoulli, CongruenceSubgroup.Gamma1_in_Gamma0, CongruenceSubgroup.Gamma1_mem, eq_scalar_center_equiv_rootsOfUnity, CongruenceSubgroup.mem_conjGL, CongruenceSubgroup.strictPeriods_Gamma, cosetToCuspOrbit_apply_mk, CongruenceSubgroup.Gamma1_to_Gamma0_mem, Subgroup.strictPeriods_SL2Z, CongruenceSubgroup.mem_conjGL', FixedDetMatrices.reduce_of_not_pos, SlashInvariantForm.vAdd_width_periodic, CongruenceSubgroup.conj_cong_is_cong, EisensteinSeries.eisensteinSeriesSIF_apply, UpperHalfPlane.modular_T_zpow_smul, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformlyOn, CongruenceSubgroup.IsCongruenceSubgroup.finiteIndex, Subgroup.IsArithmetic.finiteIndex_comap, discreteSpecialLinearGroupIntRange, EisensteinSeries.eisensteinSeries_SIF_MDifferentiable, ModularGroup.coe_T_zpow, Subgroup.instHasDetOneMapSpecialLinearGroupGeneralLinearGroupMapGL, CongruenceSubgroup.Gamma_mem, EisensteinSeries.eisensteinSeriesSIF_mdifferentiable, Subgroup.strictWidthInfty_SL2Z, ModularGroup.exists_eq_T_zpow_of_c_eq_zero, mem_center_iff, SlashInvariantForm.T_zpow_width_invariant, EisensteinSeries.isBoundedAtImInfty_eisensteinSeriesSIF, CongruenceSubgroup.Gamma0_mem
|
instHasDistribNeg π | CompOp | β |
instInhabited π | CompOp | β |
instNeg π | CompOp | 4 mathmath: coe_int_neg, coe_GLPos_neg, coe_neg, ModularGroup.SL_neg_smul
|
instPowNat π | CompOp | 1 mathmath: coe_pow
|
map π | CompOp | 27 mathmath: CongruenceSubgroup.Gamma_mem', ModularForm.SL_slash, CongruenceSubgroup.conjGL_coe, map_intCast_injective, ModularGroup.sl_moeb, coe_int_neg, ModularGroup.denom_apply, map_apply_coe, ModularGroup.denom_S, CuspForm.coe_translate, EisensteinSeries.vecMul_SL2_mem_gammaSet, ModularForm.SL_slash_def, SlashInvariantForm.slash_action_eqn_SL'', ModularGroup.im_smul_eq_div_normSq, CongruenceSubgroup.mem_conjGL, map_intCast_inj, ModularGroup.tendsto_lcRow0, SL_reduction_mod_hom_val, CongruenceSubgroup.mem_conjGL', ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le, ModularForm.is_invariant_one', coe_matrix_coe, mapGL_coe_matrix, ModularForm.SL_slash_apply, EisensteinSeries.eisSummand_SL2_apply, EisensteinSeries.eisensteinSeries_slash_apply, ModularGroup.smul_eq_lcRow0_add
|
monoid π | CompOp | 111 mathmath: ModularForm.mul_slash_SL2, map_mapGL, continuous_toGL, CongruenceSubgroup.Gamma_mem', coeToGL_det, OnePoint.isBoundedAt_iff_exists_SL2Z, toGLPos_injective, ModularForm.SL_slash, CongruenceSubgroup.conjGL_coe, UpperHalfPlane.specialLinearGroup_apply, ModularGroup.one_lt_normSq_T_zpow_smul, map_intCast_injective, jacobiTheta_T_sq_smul, OnePoint.isBoundedAt_iff_forall_SL2Z, ModularGroup.sl_moeb, coe_int_neg, OnePoint.isZeroAt_iff_exists_SL2Z, EisensteinSeries.E2_slash_action, ModularGroup.coe_T_zpow_smul_eq, CongruenceSubgroup.exists_Gamma_le_conj, EisensteinSeries.G2_slash_action, isClosedEmbedding_toGL, ModularGroup.tendsto_abs_re_smul, toLin'_symm_to_linearMap, ModularGroup.exists_max_im, isCusp_SL2Z_iff', ModularGroup.denom_apply, ModularGroup.im_T_smul, map_apply_coe, EisensteinSeries.G2_S_transform, mapGL_injective, ModularGroup.SL_to_GL_tower, mapGL_inj, jacobiTheta_S_smul, ModularGroup.re_T_smul, isClosedEmbedding_mapGLInt, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_ne_zero, UpperHalfPlane.modular_S_smul, ModularGroup.re_T_inv_smul, EisensteinSeries.D2_inv, ModularGroup.denom_S, OnePoint.isZeroAt_iff_forall_SL2Z, isInducing_mapGL, ModularGroup.normSq_S_smul_lt_one, ModularGroup.exists_row_one_eq_and_min_re, ModularGroup.re_T_zpow_smul, CuspForm.coe_translate, ModularGroup.im_lt_im_S_smul, toGL_injective, ModularGroup.im_T_zpow_smul, EisensteinSeries.isBoundedAtImInfty_eisensteinSeries_SIF, EisensteinSeries.vecMul_SL2_mem_gammaSet, ModularForm.slash_action_eq'_iff, UpperHalfPlane.instIsIsometricSMulSpecialLinearGroupFinOfNatNatReal, range_toGL, ModularGroup.exists_one_half_le_im_smul, isEmbedding_toGL, coe_GLPos_neg, UpperHalfPlane.petersson_slash_SL, ModularForm.SL_slash_def, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_eq_zero, SlashInvariantForm.slash_action_eqn_SL'', UpperHalfPlane.ModularGroup_T_zpow_mem_verticalStrip, UpperHalfPlane.coe_specialLinearGroup_apply, ModularGroup.im_smul_eq_div_normSq, coe_GL_coe_matrix, CongruenceSubgroup.mem_conjGL, map_intCast_inj, coe_to_GLPos_to_GL_det, toLin'_to_linearMap, EisensteinSeries.tendsto_double_sum_S_act, ModularGroup.tendsto_lcRow0, cosetToCuspOrbit_apply_mk, OnePoint.exists_mem_SL2, SL_reduction_mod_hom_val, SlashInvariantForm.slash_S_apply, CongruenceSubgroup.mem_conjGL', ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le, ModularGroup.T_S_rel, coe_GLPos_coe_GL_coe_matrix, ModularGroup.exists_smul_mem_fd, ModularFormClass.bdd_at_infty_slash, CuspFormClass.zero_at_infty_slash, ModularForm.is_invariant_one', ModularGroup.im_T_inv_smul, UpperHalfPlane.modular_T_zpow_smul, toLin'_injective, coe_matrix_coe, mapGL_coe_matrix, ModularForm.is_invariant_const, det_mapGL, ModularForm.SL_slash_apply, EisensteinSeries.eisSummand_SL2_apply, toLin'_symm_apply, EisensteinSeries.eisensteinSeries_slash_apply, ModularGroup.coeHom_apply, isInducing_toGL, ModularGroup.SL_neg_smul, ModularForm.is_invariant_one, EisensteinSeries.tsum_symmetricIco_tsum_eq_S_act, EisensteinSeries.D2_mul, ModularGroup.exists_eq_T_zpow_of_c_eq_zero, UpperHalfPlane.modular_T_smul, toGL_inj, ModularGroup.smul_eq_lcRow0_add, toLin'_apply, ModularForm.SL_smul_slash, isEmbedding_mapGL, SlashInvariantForm.T_zpow_width_invariant, EisensteinSeries.isBoundedAtImInfty_eisensteinSeriesSIF, EisensteinSeries.G2_T_transform
|
toLin' π | CompOp | 5 mathmath: toLin'_symm_to_linearMap, toLin'_to_linearMap, toLin'_injective, toLin'_symm_apply, toLin'_apply
|
transpose π | CompOp | 1 mathmath: coe_transpose
|
Β«term_α΅Β» π | CompOp | β |