Documentation Verification Report

Symmetric

šŸ“ Source: Mathlib/LinearAlgebra/Matrix/Symmetric.lean

Statistics

MetricCount
DefinitionsIsSymm, instDecidableIsSymmOfEqTranspose
2
Theoremsadd, apply, conjTranspose, eq, ext, ext_iff, fromBlocks, map, neg, pow, smul, sub, submatrix, transpose, isSymm_add_transpose_self, isSymm_diagonal, isSymm_fromBlocks_iff, isSymm_mul_transpose_self, isSymm_one, isSymm_transpose_add_self, isSymm_transpose_mul_self, isSymm_zero
22
Total24

Matrix

Definitions

NameCategoryTheorems
IsSymm šŸ“–MathDef
25 mathmath: CartanMatrix.D_isSymm, SimpleGraph.isSymm_adjMatrix, isSymm_zero, isSymm_add_transpose_self, CartanMatrix.E₇_isSymm, isSymm_mul_transpose_self, CartanMatrix.A_isSymm, CoxeterMatrix.isSymm, SimpleGraph.isSymm_lapMatrix, QuadraticMap.isSymm_toMatrix', CartanMatrix.Eā‚ˆ_isSymm, SimpleGraph.isSymm_degMatrix, isAdjMatrix_iff_hadamard, IsAdjMatrix.symm, Fin.circulant_isSymm_iff, isSymm_transpose_add_self, isSymm_fromBlocks_iff, IsSymm.ext_iff, circulant_isSymm_iff, isSymm_one, IsDiag.isSymm, isSymm_transpose_mul_self, isSymm_diagonal, CartanMatrix.E₆_isSymm, IsSymm.ext
instDecidableIsSymmOfEqTranspose šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
isSymm_add_transpose_self šŸ“–mathematical—IsSymm
Matrix
add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
transpose
—add_comm
isSymm_diagonal šŸ“–mathematical—IsSymm
diagonal
—diagonal_transpose
isSymm_fromBlocks_iff šŸ“–mathematical—IsSymm
fromBlocks
transpose
—IsSymm.fromBlocks
isSymm_mul_transpose_self šŸ“–mathematical—IsSymm
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
transpose
—transpose_mul
isSymm_one šŸ“–mathematical—IsSymm
Matrix
one
—transpose_one
isSymm_transpose_add_self šŸ“–mathematical—IsSymm
Matrix
add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
transpose
—add_comm
isSymm_transpose_mul_self šŸ“–mathematical—IsSymm
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
transpose
—transpose_mul
isSymm_zero šŸ“–mathematical—IsSymm
Matrix
zero
—transpose_zero

Matrix.IsSymm

Theorems

NameKindAssumesProvesValidatesDepends On
add šŸ“–mathematicalMatrix.IsSymmMatrix
Matrix.add
—Matrix.transpose_add
apply šŸ“–ā€”Matrix.IsSymm——ext_iff
conjTranspose šŸ“–mathematicalMatrix.IsSymmMatrix.conjTranspose—map
transpose
eq šŸ“–mathematicalMatrix.IsSymmMatrix.transpose——
ext šŸ“–mathematical—Matrix.IsSymm—Matrix.ext
ext_iff šŸ“–mathematical—Matrix.IsSymm—Matrix.ext_iff
fromBlocks šŸ“–mathematicalMatrix.IsSymm
Matrix.transpose
Matrix.fromBlocks—Matrix.transpose_transpose
Matrix.fromBlocks_transpose
map šŸ“–mathematicalMatrix.IsSymmMatrix.map—Matrix.transpose_map
neg šŸ“–mathematicalMatrix.IsSymmMatrix
Matrix.neg
—Matrix.transpose_neg
pow šŸ“–mathematicalMatrix.IsSymmMatrix
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
CommSemiring.toSemiring
—eq_1
Matrix.transpose_pow
smul šŸ“–mathematicalMatrix.IsSymmMatrix
Matrix.smul
—Matrix.transpose_smul
sub šŸ“–mathematicalMatrix.IsSymmMatrix
Matrix.sub
—Matrix.transpose_sub
submatrix šŸ“–mathematicalMatrix.IsSymmMatrix.submatrix—Matrix.transpose_submatrix
transpose šŸ“–mathematicalMatrix.IsSymmMatrix.transpose——

---

← Back to Index