Documentation Verification Report

ToLinearEquiv

πŸ“ Source: Mathlib/LinearAlgebra/Matrix/ToLinearEquiv.lean

Statistics

MetricCount
DefinitionstoLinearEquiv, toLinearEquiv'
2
Theoremsdet_ne_zero, mul_iff_left, mul_iff_right, of_det_ne_zero, smul_iff, det_ne_zero_of_sum_col_pos, det_ne_zero_of_sum_row_pos, exists_mulVec_eq_zero_iff, exists_vecMul_eq_zero_iff, ker_toLin_eq_bot, nondegenerate_iff_det_ne_zero, range_toLin_eq_top, separatingLeft_iff_det_ne_zero, separatingRight_iff_det_ne_zero, toLinearEquiv'_apply, toLinearEquiv'_symm_apply, toLinearEquiv_apply
17
Total19

Matrix

Definitions

NameCategoryTheorems
toLinearEquiv πŸ“–CompOp
1 mathmath: toLinearEquiv_apply
toLinearEquiv' πŸ“–CompOp
4 mathmath: toLinearEquiv'_symm_apply, toPerfectPairing_apply_apply, toLinearEquiv'_apply, toPerfectPairing

Theorems

NameKindAssumesProvesValidatesDepends On
det_ne_zero_of_sum_col_pos πŸ“–β€”Pairwise
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.univ
β€”β€”isEmpty_or_nonempty
coe_det_isEmpty
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Mathlib.Tactic.Contrapose.contrapose₃
Mathlib.Tactic.Push.not_forall_eq
exists_vecMul_eq_zero_iff
IsStrictOrderedRing.isDomain
AddGroup.existsAddOfLE
Finset.univ_nonempty
Finset.exists_mem_eq_sup'
mul_le_mul_iff_rightβ‚€
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Finset.mul_sum
MulZeroClass.mul_zero
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
le_refl
mul_le_mul_right_of_neg
IsStrictOrderedRing.toMulPosStrictMono
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Finset.le_sup'
neg_smul
one_smul
smul_vecMul
IsScalarTower.right
smul_zero
Function.ne_iff
Pi.smul_apply
Left.neg_pos_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Ne.lt_of_le
det_ne_zero_of_sum_row_pos πŸ“–β€”Pairwise
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.univ
β€”β€”det_transpose
det_ne_zero_of_sum_col_pos
Finset.sum_congr
exists_mulVec_eq_zero_iff πŸ“–mathematicalβ€”mulVec
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
det
β€”IsDomain.toNontrivial
Localization.isLocalization
exists_vecMul_eq_zero_iff πŸ“–mathematicalβ€”vecMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
det
β€”det_transpose
exists_mulVec_eq_zero_iff
ker_toLin_eq_bot πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
det
LinearMap.ker
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
Matrix
LinearMap
addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
LinearMap.addCommMonoid
module
Semiring.toModule
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toLin
Finite.of_fintype
Bot.bot
Submodule
Submodule.instBot
β€”RingHomInvPair.ids
smulCommClass_self
Finite.of_fintype
LinearMap.ker_eq_bot
LinearEquiv.injective
nondegenerate_iff_det_ne_zero πŸ“–mathematicalβ€”Nondegenerate
Finite.of_fintype
β€”Finite.of_fintype
exists_vecMul_eq_zero_iff
Mathlib.Tactic.Push.not_and_eq
Nondegenerate.exists_not_ortho_of_ne_zero
dotProduct_mulVec
zero_dotProduct
nondegenerate_of_det_ne_zero
range_toLin_eq_top πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
det
LinearMap.range
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
Matrix
LinearMap
addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
LinearMap.addCommMonoid
module
Semiring.toModule
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toLin
Finite.of_fintype
Top.top
Submodule
Submodule.instTop
β€”RingHomSurjective.ids
RingHomInvPair.ids
smulCommClass_self
Finite.of_fintype
LinearMap.range_eq_top
LinearEquiv.surjective
separatingLeft_iff_det_ne_zero πŸ“–mathematicalβ€”SeparatingLeft
Finite.of_fintype
β€”Finite.of_fintype
exists_vecMul_eq_zero_iff
separatingLeft_def
dotProduct_mulVec
zero_dotProduct
Nondegenerate.separatingLeft
nondegenerate_of_det_ne_zero
separatingRight_iff_det_ne_zero πŸ“–mathematicalβ€”SeparatingRight
Finite.of_fintype
β€”Finite.of_fintype
exists_mulVec_eq_zero_iff
separatingRight_def
dotProduct_zero
Nondegenerate.separatingRight
nondegenerate_of_det_ne_zero
toLinearEquiv'_apply πŸ“–mathematicalβ€”LinearEquiv.toLinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
toLinearEquiv'
DFunLike.coe
LinearEquiv
Matrix
LinearMap
NonAssocSemiring.toNonUnitalNonAssocSemiring
addCommMonoid
LinearMap.addCommMonoid
module
LinearMap.module
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toLin'
β€”RingHomInvPair.ids
toLinearEquiv'_symm_apply πŸ“–mathematicalβ€”LinearEquiv.toLinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
Semiring.toModule
LinearEquiv.symm
toLinearEquiv'
DFunLike.coe
LinearEquiv
Matrix
LinearMap
NonAssocSemiring.toNonUnitalNonAssocSemiring
addCommMonoid
LinearMap.addCommMonoid
module
LinearMap.module
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toLin'
Invertible.invOf
instMulOfFintypeOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”RingHomInvPair.ids
toLinearEquiv_apply πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
det
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
LinearEquiv.instEquivLike
toLinearEquiv
LinearMap
LinearMap.instFunLike
Matrix
addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
LinearMap.addCommMonoid
module
Semiring.toModule
LinearMap.module
DFinsupp.instEquivLikeLinearEquiv
toLin
Finite.of_fintype
β€”RingHomInvPair.ids

Matrix.Nondegenerate

Theorems

NameKindAssumesProvesValidatesDepends On
det_ne_zero πŸ“–β€”Matrix.Nondegenerate
Finite.of_fintype
β€”β€”Finite.of_fintype
Matrix.nondegenerate_iff_det_ne_zero
mul_iff_left πŸ“–mathematicalMatrix.Nondegenerate
Finite.of_fintype
Matrix
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”Finite.of_fintype
Matrix.det_mul
mul_ne_zero_iff_left
IsDomain.to_noZeroDivisors
mul_iff_right πŸ“–mathematicalMatrix.Nondegenerate
Finite.of_fintype
Matrix
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”Finite.of_fintype
Matrix.det_mul
mul_ne_zero_iff_right
IsDomain.to_noZeroDivisors
of_det_ne_zero πŸ“–mathematicalβ€”Matrix.Nondegenerate
Finite.of_fintype
β€”Finite.of_fintype
Matrix.nondegenerate_iff_det_ne_zero
smul_iff πŸ“–mathematicalβ€”Matrix.Nondegenerate
Matrix
Matrix.smul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”Finite.of_fintype
Matrix.nondegenerate_def
Matrix.smul_mulVec
IsScalarTower.right
dotProduct_smul
Algebra.to_smulCommClass
mul_eq_zero_iff_left
IsDomain.to_noZeroDivisors

---

← Back to Index