Documentation Verification Report

ZPow

πŸ“ Source: Mathlib/LinearAlgebra/Matrix/ZPow.lean

Statistics

MetricCount
DefinitionsinstDivInvMonoid, ZPow
2
Theoremsdet_zpow, mul_zpow, self_zpow, zpow_left, zpow_right, zpow_self, zpow_zpow, zpow_zpow_self, zpow, zpow_right, coe_units_zpow, conjTranspose_zpow, inv_pow', inv_zpow, inv_zpow', isUnit_det_zpow_iff, one_div_pow, one_div_zpow, one_zpow, pow_inv_comm', pow_sub', transpose_zpow, zero_zpow, zero_zpow_eq, zpow_add, zpow_add_of_nonneg, zpow_add_of_nonpos, zpow_add_one, zpow_add_one_of_ne_neg_one, zpow_mul, zpow_mul', zpow_ne_zero_of_isUnit_det, zpow_neg, zpow_neg_mul_zpow_self, zpow_neg_natCast, zpow_neg_one, zpow_one_add, zpow_sub, zpow_sub_one
39
Total41

IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
det_zpow πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Matrix.det
Matrix
DivInvMonoid.toZPow
Matrix.instDivInvMonoid
β€”Matrix.det.congr_simp
zpow_natCast
Matrix.det_pow
pow
zpow_negSucc
Matrix.det_nonsing_inv

Matrix

Definitions

NameCategoryTheorems
instDivInvMonoid πŸ“–CompOp
38 mathmath: IsHermitian.zpow, Commute.zpow_self, one_div_pow, isUnit_det_zpow_iff, SemiconjBy.zpow_right, zpow_neg_one, zpow_add, zpow_add_of_nonneg, Commute.mul_zpow, one_zpow, exp_zsmul, Commute.zpow_zpow, IsSymm.zpow, IsUnit.det_zpow, Commute.zpow_zpow_self, Commute.zpow_right, transpose_zpow, zpow_add_of_nonpos, zpow_add_one, conjTranspose_zpow, Commute.self_zpow, Commute.zpow_left, PosSemidef.zpow, zpow_mul', zpow_neg, inv_zpow', zero_zpow_eq, zpow_sub_one, inv_zpow, zpow_one_add, zpow_mul, zpow_neg_natCast, zero_zpow, zpow_neg_mul_zpow_self, zpow_sub, zpow_add_one_of_ne_neg_one, coe_units_zpow, one_div_zpow

Theorems

NameKindAssumesProvesValidatesDepends On
coe_units_zpow πŸ“–mathematicalβ€”Units.val
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Units
DivInvMonoid.toZPow
Units.instDivInvMonoid
instDivInvMonoid
β€”zpow_natCast
Units.val_pow_eq_pow_val
zpow_negSucc
inv_pow
inv_pow'
coe_units_inv
conjTranspose_zpow πŸ“–mathematicalβ€”conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
StarRing.toStarAddMonoid
Matrix
DivInvMonoid.toZPow
instDivInvMonoid
β€”zpow_natCast
conjTranspose_pow
zpow_negSucc
conjTranspose_nonsing_inv
inv_pow' πŸ“–mathematicalβ€”Matrix
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
inv
β€”pow_zero
inv_one
pow_succ
mul_inv_rev
pow_succ'
inv_zpow πŸ“–mathematicalβ€”Matrix
DivInvMonoid.toZPow
instDivInvMonoid
inv
β€”zpow_natCast
inv_pow'
zpow_negSucc
inv_zpow' πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
det
Matrix
DivInvMonoid.toZPow
instDivInvMonoid
inv
β€”zpow_neg
inv_zpow
isUnit_det_zpow_iff πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
det
Matrix
DivInvMonoid.toZPow
instDivInvMonoid
β€”Int.induction_on
det.congr_simp
zpow_zero
det_one
zpow_natCast
det_pow
isUnit_pow_succ_iff
neg_add'
zpow_neg_natCast
isUnit_nonsing_inv_det_iff
neg_eq_zero
one_div_pow πŸ“–mathematicalβ€”Matrix
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivInvMonoid.toDiv
instDivInvMonoid
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”one_div
inv_pow'
one_div_zpow πŸ“–mathematicalβ€”Matrix
DivInvMonoid.toZPow
instDivInvMonoid
DivInvMonoid.toDiv
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”one_div
inv_zpow
one_zpow πŸ“–mathematicalβ€”Matrix
DivInvMonoid.toZPow
instDivInvMonoid
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”zpow_natCast
one_pow
zpow_negSucc
inv_one
pow_inv_comm' πŸ“–mathematicalβ€”Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
inv
β€”inv_pow'
pow_zero
mul_one
one_mul
nonsing_inv_cancel_or_zero
pow_succ
pow_succ'
mul_assoc
mul_one
zero_pow
MulZeroClass.zero_mul
MulZeroClass.mul_zero
pow_sub' πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
det
Matrix
Monoid.toNatPow
semiring
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
inv
β€”tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
pow_add
mul_assoc
mul_nonsing_inv
det_pow
IsUnit.pow
mul_one
transpose_zpow πŸ“–mathematicalβ€”transpose
Matrix
DivInvMonoid.toZPow
instDivInvMonoid
β€”zpow_natCast
transpose_pow
zpow_negSucc
transpose_nonsing_inv
zero_zpow πŸ“–mathematicalβ€”Matrix
DivInvMonoid.toZPow
instDivInvMonoid
zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”zpow_natCast
zero_pow
Nat.cast_zero
Int.instCharZero
zpow_negSucc
inv_zero
zero_zpow_eq πŸ“–mathematicalβ€”Matrix
DivInvMonoid.toZPow
instDivInvMonoid
zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
one
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”zpow_zero
zero_zpow
zpow_add πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
det
Matrix
DivInvMonoid.toZPow
instDivInvMonoid
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”Int.induction_on
add_zero
zpow_zero
mul_one
zpow_add_one
mul_assoc
zpow_sub_one
add_sub_assoc
zpow_add_of_nonneg πŸ“–mathematicalβ€”Matrix
DivInvMonoid.toZPow
instDivInvMonoid
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”zpow_natCast
pow_add
zpow_add_of_nonpos πŸ“–mathematicalβ€”Matrix
DivInvMonoid.toZPow
instDivInvMonoid
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”nonsing_inv_cancel_or_zero
zpow_add
isUnit_det_of_left_inverse
zpow_neg_natCast
pow_add
zpow_add_one πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
det
Matrix
DivInvMonoid.toZPow
instDivInvMonoid
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”zpow_natCast
pow_succ
neg_add
neg_add_cancel_right
zpow_neg
mul_inv_rev
mul_assoc
nonsing_inv_mul
mul_one
pow_succ'
zpow_add_one_of_ne_neg_one πŸ“–mathematicalβ€”Matrix
DivInvMonoid.toZPow
instDivInvMonoid
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”zpow_natCast
pow_succ
nonsing_inv_cancel_or_zero
zpow_add_one
isUnit_det_of_left_inverse
zpow_neg_natCast
zero_pow
MulZeroClass.zero_mul
zpow_mul πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
det
Matrix
DivInvMonoid.toZPow
instDivInvMonoid
β€”zpow_natCast
pow_mul
zpow_negSucc
zpow_neg_natCast
inv_pow'
nonsing_inv_nonsing_inv
det_pow
IsUnit.pow
zpow_mul' πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
det
Matrix
DivInvMonoid.toZPow
instDivInvMonoid
β€”mul_comm
zpow_mul
zpow_ne_zero_of_isUnit_det πŸ“–β€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
det
β€”β€”IsUnit.det_zpow
Mathlib.Tactic.Contrapose.contrapose₃
det_zero
not_isUnit_zero
zpow_neg πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
det
Matrix
DivInvMonoid.toZPow
instDivInvMonoid
inv
β€”zpow_neg_natCast
zpow_negSucc
zpow_natCast
nonsing_inv_nonsing_inv
det_pow
IsUnit.pow
zpow_neg_mul_zpow_self πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
det
Matrix
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
DivInvMonoid.toZPow
instDivInvMonoid
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”zpow_neg
nonsing_inv_mul
IsUnit.det_zpow
zpow_neg_natCast πŸ“–mathematicalβ€”Matrix
DivInvMonoid.toZPow
instDivInvMonoid
inv
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
neg_zero
zpow_zero
pow_zero
inv_one
DivInvMonoid.zpow_neg'
zpow_neg_one πŸ“–mathematicalβ€”Matrix
DivInvMonoid.toZPow
instDivInvMonoid
inv
β€”zero_add
zpow_one
DivInvMonoid.zpow_neg'
zpow_one_add πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
det
Matrix
DivInvMonoid.toZPow
instDivInvMonoid
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”zpow_add
zpow_one
zpow_sub πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
det
Matrix
DivInvMonoid.toZPow
instDivInvMonoid
DivInvMonoid.toDiv
β€”sub_eq_add_neg
zpow_add
zpow_neg
div_eq_mul_inv
zpow_sub_one πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
det
Matrix
DivInvMonoid.toZPow
instDivInvMonoid
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
inv
β€”mul_assoc
mul_nonsing_inv
mul_one
zpow_add_one
sub_add_cancel

Matrix.Commute

Theorems

NameKindAssumesProvesValidatesDepends On
mul_zpow πŸ“–mathematicalCommute
Matrix
Matrix.instMulOfFintypeOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
DivInvMonoid.toZPow
Matrix.instDivInvMonoid
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
β€”zpow_natCast
Commute.mul_pow
zpow_negSucc
Matrix.mul_inv_rev
Commute.eq
Commute.pow_pow
self_zpow πŸ“–mathematicalβ€”Commute
Matrix
Matrix.instMulOfFintypeOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
DivInvMonoid.toZPow
Matrix.instDivInvMonoid
β€”zpow_right
Commute.refl
zpow_left πŸ“–mathematicalCommute
Matrix
Matrix.instMulOfFintypeOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
DivInvMonoid.toZPow
Matrix.instDivInvMonoid
β€”Commute.symm
zpow_right
zpow_right πŸ“–mathematicalCommute
Matrix
Matrix.instMulOfFintypeOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
DivInvMonoid.toZPow
Matrix.instDivInvMonoid
β€”Matrix.nonsing_inv_cancel_or_zero
Matrix.SemiconjBy.zpow_right
Matrix.isUnit_det_of_left_inverse
zpow_natCast
Commute.pow_right
zpow_negSucc
zero_pow
zpow_self πŸ“–mathematicalβ€”Commute
Matrix
Matrix.instMulOfFintypeOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
DivInvMonoid.toZPow
Matrix.instDivInvMonoid
β€”zpow_left
Commute.refl
zpow_zpow πŸ“–mathematicalCommute
Matrix
Matrix.instMulOfFintypeOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
DivInvMonoid.toZPow
Matrix.instDivInvMonoid
β€”zpow_right
zpow_left
zpow_zpow_self πŸ“–mathematicalβ€”Commute
Matrix
Matrix.instMulOfFintypeOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
DivInvMonoid.toZPow
Matrix.instDivInvMonoid
β€”zpow_zpow
Commute.refl

Matrix.IsSymm

Theorems

NameKindAssumesProvesValidatesDepends On
zpow πŸ“–mathematicalMatrix.IsSymmMatrix
DivInvMonoid.toZPow
Matrix.instDivInvMonoid
β€”eq_1
Matrix.transpose_zpow

Matrix.SemiconjBy

Theorems

NameKindAssumesProvesValidatesDepends On
zpow_right πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Matrix.det
SemiconjBy
Matrix
Matrix.instMulOfFintypeOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
DivInvMonoid.toZPow
Matrix.instDivInvMonoid
β€”zpow_natCast
SemiconjBy.pow_right
Matrix.det_pow
IsUnit.pow
zpow_negSucc
Matrix.nonsing_inv_apply
SemiconjBy.eq_1
IsRegular.left
Matrix.isRegular_of_isLeftRegular_det
IsUnit.isRegular
mul_assoc
SemiconjBy.eq
Matrix.mul_smul
Algebra.to_smulCommClass
Matrix.mul_adjugate
Matrix.mul_assoc
smul_smul
IsUnit.val_inv_mul
one_smul
Matrix.mul_one
Matrix.one_mul

Set

Definitions

NameCategoryTheorems
ZPow πŸ“–CompOp
5 mathmath: Nonempty.zpow, singleton_zpow, zpow_eq_empty, Finset.coe_zpow, empty_zpow

---

← Back to Index