Documentation Verification Report

Restrict

šŸ“ Source: Mathlib/LinearAlgebra/PerfectPairing/Restrict.lean

Statistics

MetricCount
Definitions0
Theoremsrestrict, restrictScalars, restrictScalars_of_field, exists_basis_basis_of_span_eq_top_of_mem_algebraMap, finrank_eq_of_isPerfPair, restrictScalarsField_apply_apply
6
Total6

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
exists_basis_basis_of_span_eq_top_of_mem_algebraMap šŸ“–mathematicalSubmodule.span
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SetLike.coe
Submodule
Submodule.setLike
Top.top
Submodule.instTop
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
algebraMap
Semifield.toCommSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semiring.toModule
instFunLike
addCommMonoid
module
Algebra.to_smulCommClass
CommSemiring.toSemiring
Algebra.id
Module.Basis
Module.Basis.instFunLike
Submodule.addCommMonoid
Submodule.module
—Algebra.to_smulCommClass
Module.IsReflexive.of_isPerfPair
flip.instIsPerfPair
exists_linearIndependent
Subtype.range_coe_subtype
Set.setOf_mem_eq
le_refl
Module.Finite.finite_basis
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.instFiniteDimensionalOfIsReflexive
Subtype.coe_prop
LinearIndependent.restrict_scalars
FaithfulSMul.algebraMap_injective
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
LinearIndependent.of_comp
le_antisymm
Submodule.span_le
Module.finrank_eq_card_basis
commRing_strongRankCondition
Module.finrank_of_isPerfPair
smulCommClass_self
Finite.of_fintype
RingHomInvPair.ids
Module.Basis.dualBasis_repr
Matrix.mem_subfield_of_mul_eq_one_of_mem_subfield_left
Module.Basis.toMatrix_mul_toMatrix
Module.Basis.toMatrix_self
Module.Basis.mem_span_iff_repr_mem
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Module.Basis.toMatrix_mulVec_repr
Subring.sum_mem
Subring.mul_mem
Submodule.map_injective_of_injective
RingHomSurjective.ids
Submodule.injective_subtype
Submodule.map_span
Set.image_univ
Set.image_image
Set.image_congr
Submodule.map_top
Submodule.range_subtype
Module.Basis.coe_reindex
finrank_eq_of_isPerfPair šŸ“–mathematicalSubmodule.span
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SetLike.coe
Submodule
Submodule.setLike
Top.top
Submodule.instTop
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
algebraMap
Semifield.toCommSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semiring.toModule
instFunLike
addCommMonoid
module
Algebra.to_smulCommClass
CommSemiring.toSemiring
Algebra.id
Module.finrank
Submodule.addCommMonoid
Submodule.module
—Algebra.to_smulCommClass
exists_basis_basis_of_span_eq_top_of_mem_algebraMap
Module.finrank_eq_card_basis
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
restrictScalarsField_apply_apply šŸ“–mathematicalSubring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semiring.toModule
instFunLike
addCommMonoid
module
Algebra.to_smulCommClass
CommSemiring.toSemiring
Algebra.id
RingHom
RingHom.instFunLike
NonAssocSemiring.toNonUnitalNonAssocSemiring
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
restrictScalarsRangeā‚‚
Algebra.toSMul
Algebra.toModule
IsScalarTower.right
IsScalarTower.to_smulCommClass'
Algebra.linearMap
FaithfulSMul.algebraMap_injective
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
Ring.toAddCommGroup
IsLocalRing.toNontrivial
Field.instIsLocalRing
—Algebra.to_smulCommClass
restrictScalarsRangeā‚‚_apply
IsScalarTower.right
IsScalarTower.to_smulCommClass'
FaithfulSMul.algebraMap_injective
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing

LinearMap.IsPerfPair

Theorems

NameKindAssumesProvesValidatesDepends On
restrict šŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
LinearMap.IsPerfectCompl
LinearMap.range
RingHomSurjective.ids
LinearMap.IsPerfPair
LinearMap.compl₁₂
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
Algebra.to_smulCommClass
Algebra.id
—Algebra.to_smulCommClass
RingHomSurjective.ids
LinearMap.flip.instIsPerfPair
LinearMap.IsPerfectCompl.flip
restrictScalars šŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
Submodule.span
SetLike.coe
Submodule
Submodule.setLike
LinearMap.range
RingHomSurjective.ids
Top.top
Submodule.instTop
LinearMap.comp
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
RingHomCompTriple.ids
LinearMap.restrictScalars
Semiring.toModule
LinearMap.IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
IsScalarTower.right
LinearEquiv
RingHomInvPair.ids
Module.Dual
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearMap.toPerfPair
Algebra.linearMap
LinearMap.flip
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
LinearMap.flip.instIsPerfPair
Subring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
algebraMap
LinearMap.IsPerfPair
LinearMap.restrictScalarsRangeā‚‚
IsScalarTower.to_smulCommClass'
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
—Algebra.to_smulCommClass
RingHomSurjective.ids
RingHomCompTriple.ids
LinearMap.IsScalarTower.compatibleSMul
IsScalarTower.right
RingHomInvPair.ids
LinearMap.flip.instIsPerfPair
IsScalarTower.to_smulCommClass'
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
SMulCommClass.symm
restrictScalars_of_field šŸ“–mathematicalDFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
LinearMap.IsPerfectCompl
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Submodule.span
SetLike.coe
Submodule
Submodule.setLike
LinearMap.range
RingHomSurjective.ids
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
algebraMap
Semifield.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
CommSemiring.toSemiring
Algebra.id
LinearMap.IsPerfPair
LinearMap.restrictScalarsRangeā‚‚
Algebra.toSMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
IsScalarTower.right
IsScalarTower.to_smulCommClass'
Algebra.linearMap
FaithfulSMul.algebraMap_injective
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
Ring.toAddCommGroup
IsLocalRing.toNontrivial
Field.instIsLocalRing
—Algebra.to_smulCommClass
RingHomSurjective.ids
restrict
LinearMap.IsPerfectCompl.congr_simp
Submodule.range_subtype
Submodule.isScalarTower'
IsScalarTower.left
RingHomCompTriple.ids
Submodule.injective_inclusionSpan
LinearMap.range_comp_of_range_eq_top
LinearMap.range_rangeRestrict
Submodule.span_range_inclusionSpan
LinearMap.BilinMap.apply_apply_mem_of_mem_span
IsScalarTower.to_smulCommClass'
IsScalarTower.right
smulCommClass_self
LinearMap.IsScalarTower.compatibleSMul
LinearMap.instIsScalarTower
Submodule.subset_span

---

← Back to Index