Documentation Verification Report

Pi

πŸ“ Source: Mathlib/LinearAlgebra/Pi.lean

Statistics

MetricCount
DefinitionsconsLinearEquiv, linearMap, finTwoArrow, funUnique, piCongrLeft, piCongrLeft', piCongrRight, piCurry, piFinTwo, piOptionEquivProd, piRing, sumArrowLequivProdArrow, compLeft, const, diag, iInfKerProjEquiv, lsum, pi, proj, single, vecCons, vecConsβ‚‚, vecEmpty, vecEmptyβ‚‚, pi
25
TheoremsconsLinearEquiv_apply, consLinearEquiv_symm_apply, linearMap_apply, finTwoArrow_apply, finTwoArrow_symm_apply, funUnique_apply, funUnique_symm_apply, piCongrLeft'_apply, piCongrLeft'_symm_apply, piCongrRight_apply, piCongrRight_refl, piCongrRight_symm, piCongrRight_trans, piCurry_apply, piCurry_symm_apply, piFinTwo_apply, piFinTwo_symm_apply, piRing_apply, piRing_symm_apply, sumArrowLequivProdArrow_apply_fst, sumArrowLequivProdArrow_apply_snd, sumArrowLequivProdArrow_symm_apply_inl, sumArrowLequivProdArrow_symm_apply_inr, pi, apply_single, coe_proj, coe_single, compLeft_apply, const_apply, disjoint_single_single, iInf_ker_proj, iInf_ker_proj_le_iSup_range_single, iSup_range_single, iSup_range_single_eq_iInf_ker_proj, iSup_range_single_le_iInf_ker_proj, ker_compLeft, ker_pi, ker_single, lsum_apply, lsum_piSingle, lsum_single, lsum_symm_apply, pi_apply, pi_apply_eq_sum_univ, pi_comp, pi_eq_zero, pi_ext, pi_ext', pi_ext'_iff, pi_ext_iff, pi_proj, pi_proj_comp, pi_zero, proj_apply, proj_comp_single, proj_comp_single_ne, proj_comp_single_same, proj_pi, proj_surjective, range_compLeft, single_apply, single_eq_pi_diag, sum_single_apply, toAddMonoidHom_proj, update_apply, vecCons_apply, vecConsβ‚‚_apply, vecEmpty_apply, vecEmptyβ‚‚_apply, pi_induction, pi_induction', mem_span_range_single_inl_iff, biInf_comap_proj, coe_pi, iInf_comap_proj, iSup_map_single, iSup_map_single_le, le_comap_single_pi, mem_pi, pi_empty, pi_mono, pi_top, pi_univ_bot
83
Total108

Fin

Definitions

NameCategoryTheorems
consLinearEquiv πŸ“–CompOp
2 mathmath: consLinearEquiv_symm_apply, consLinearEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
consLinearEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Prod.instAddCommMonoid
Pi.addCommMonoid
Prod.instModule
Pi.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
consLinearEquiv
Equiv.toFun
consEquiv
β€”RingHomInvPair.ids
consLinearEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Prod.instAddCommMonoid
Pi.module
Prod.instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
consLinearEquiv
Equiv.invFun
consEquiv
β€”RingHomInvPair.ids

Function.ExtendByZero

Definitions

NameCategoryTheorems
linearMap πŸ“–CompOp
1 mathmath: linearMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
linearMap_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
linearMap
Function.extend
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”

LinearEquiv

Definitions

NameCategoryTheorems
finTwoArrow πŸ“–CompOp
2 mathmath: finTwoArrow_apply, finTwoArrow_symm_apply
funUnique πŸ“–CompOp
2 mathmath: funUnique_symm_apply, funUnique_apply
piCongrLeft πŸ“–CompOpβ€”
piCongrLeft' πŸ“–CompOp
2 mathmath: piCongrLeft'_symm_apply, piCongrLeft'_apply
piCongrRight πŸ“–CompOp
6 mathmath: piCongrRight_apply, piCongrRight_trans, MultilinearMap.freeDFinsuppEquiv_def, piCongrRight_symm, piCongrRight_refl, QuadraticMap.IsometryEquiv.pi_toLinearEquiv
piCurry πŸ“–CompOp
2 mathmath: piCurry_apply, piCurry_symm_apply
piFinTwo πŸ“–CompOp
2 mathmath: piFinTwo_symm_apply, piFinTwo_apply
piOptionEquivProd πŸ“–CompOpβ€”
piRing πŸ“–CompOp
2 mathmath: piRing_symm_apply, piRing_apply
sumArrowLequivProdArrow πŸ“–CompOp
4 mathmath: sumArrowLequivProdArrow_symm_apply_inr, sumArrowLequivProdArrow_apply_fst, sumArrowLequivProdArrow_apply_snd, sumArrowLequivProdArrow_symm_apply_inl

Theorems

NameKindAssumesProvesValidatesDepends On
finTwoArrow_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Prod.instAddCommMonoid
Pi.Function.module
Prod.instModule
EquivLike.toFunLike
instEquivLike
finTwoArrow
β€”RingHomInvPair.ids
finTwoArrow_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Prod.instAddCommMonoid
Pi.addCommMonoid
Prod.instModule
Pi.Function.module
EquivLike.toFunLike
instEquivLike
symm
finTwoArrow
Matrix.vecCons
Matrix.vecEmpty
β€”RingHomInvPair.ids
funUnique_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Pi.Function.module
EquivLike.toFunLike
instEquivLike
funUnique
Function.eval
Unique.instInhabited
β€”RingHomInvPair.ids
funUnique_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Pi.Function.module
EquivLike.toFunLike
instEquivLike
symm
funUnique
AddEquiv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Pi.instAdd
AddEquiv.instEquivLike
AddEquiv.symm
AddEquiv.funUnique
β€”RingHomInvPair.ids
piCongrLeft'_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Pi.module
instEquivLike
piCongrLeft'
β€”RingHomInvPair.ids
piCongrLeft'_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Pi.module
instEquivLike
symm
piCongrLeft'
Equiv.piCongrLeft'
β€”RingHomInvPair.ids
piCongrRight_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Pi.module
EquivLike.toFunLike
instEquivLike
piCongrRight
β€”RingHomInvPair.ids
piCongrRight_refl πŸ“–mathematicalβ€”piCongrRight
refl
Pi.addCommMonoid
Pi.module
β€”RingHomInvPair.ids
piCongrRight_symm πŸ“–mathematicalβ€”symm
Pi.addCommMonoid
Pi.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
piCongrRight
β€”RingHomInvPair.ids
piCongrRight_trans πŸ“–mathematicalβ€”trans
Pi.addCommMonoid
Pi.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
piCongrRight
β€”RingHomInvPair.ids
RingHomCompTriple.ids
piCurry_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Pi.module
EquivLike.toFunLike
instEquivLike
piCurry
Sigma.curry
β€”RingHomInvPair.ids
piCurry_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Pi.module
EquivLike.toFunLike
instEquivLike
symm
piCurry
Sigma.uncurry
β€”RingHomInvPair.ids
piFinTwo_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Prod.instAddCommMonoid
Pi.module
Prod.instModule
EquivLike.toFunLike
instEquivLike
piFinTwo
β€”RingHomInvPair.ids
piFinTwo_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Prod.instAddCommMonoid
Pi.addCommMonoid
Prod.instModule
Pi.module
EquivLike.toFunLike
instEquivLike
symm
piFinTwo
Fin.cons
finZeroElim
β€”RingHomInvPair.ids
piRing_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.addCommMonoid
LinearMap.module
EquivLike.toFunLike
instEquivLike
piRing
LinearMap.instFunLike
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”RingHomInvPair.ids
piRing_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
LinearEquiv
RingHomInvPair.ids
LinearMap.addCommMonoid
LinearMap.module
EquivLike.toFunLike
instEquivLike
symm
piRing
Finset.sum
Finset.univ
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”RingHomInvPair.ids
RingHomCompTriple.ids
Finset.sum_congr
LinearMap.coe_sum
Finset.sum_apply
sumArrowLequivProdArrow_apply_fst πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Prod.instAddCommMonoid
Pi.Function.module
Prod.instModule
EquivLike.toFunLike
instEquivLike
sumArrowLequivProdArrow
β€”RingHomInvPair.ids
sumArrowLequivProdArrow_apply_snd πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.addCommMonoid
Prod.instAddCommMonoid
Pi.Function.module
Prod.instModule
EquivLike.toFunLike
instEquivLike
sumArrowLequivProdArrow
β€”RingHomInvPair.ids
sumArrowLequivProdArrow_symm_apply_inl πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Prod.instAddCommMonoid
Pi.addCommMonoid
Prod.instModule
Pi.Function.module
EquivLike.toFunLike
instEquivLike
symm
sumArrowLequivProdArrow
β€”RingHomInvPair.ids
sumArrowLequivProdArrow_symm_apply_inr πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Prod.instAddCommMonoid
Pi.addCommMonoid
Prod.instModule
Pi.Function.module
EquivLike.toFunLike
instEquivLike
symm
sumArrowLequivProdArrow
β€”RingHomInvPair.ids

LinearMap

Definitions

NameCategoryTheorems
compLeft πŸ“–CompOp
14 mathmath: groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, groupCohomology.mapCocyclesβ‚‚_comp_i_apply, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, mapMatrixModule_apply, groupCohomology.cochainsMap_f_2_comp_cochainsIsoβ‚‚_apply, compLeft_apply, groupCohomology.cochainsMap_f, groupCohomology.mapCocycles₁_comp_i_apply, Rep.coindMap_hom, ker_compLeft, groupCohomology.cochainsMap_f_hom, range_compLeft, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, IsBaseChange.finitePow
const πŸ“–CompOp
1 mathmath: const_apply
diag πŸ“–CompOp
2 mathmath: proj_comp_single, single_eq_pi_diag
iInfKerProjEquiv πŸ“–CompOpβ€”
lsum πŸ“–CompOp
7 mathmath: Fintype.linearIndependent_iff', lsum_apply, Fintype.linearIndependent_iff'β‚›, lsum_single, lsum_piSingle, lsum_symm_apply, Submodule.piQuotientLift_mk
pi πŸ“–CompOp
23 mathmath: Rep.resCoindHomEquiv_apply_hom, ker_pi, det_pi, Rep.resCoindAdjunction_unit_app_hom_hom, DFinsupp.injective_pi_lapply, Ideal.pi_mkQ_surjective, Ideal.pi_tensorProductMk_quotient_surjective, pi_apply, pi_eq_zero, IsLocalizedModule.pi, ContinuousLinearMap.coe_pi, IsBaseChange.pi, Matrix.diagonal_toLin', Ideal.ker_tensorProductMk_quotient, pi_proj_comp, Submodule.pi_liftQ_eq_liftQ_pi, pi_comp, proj_pi, pi_proj, Ideal.pi_mkQ_rTensor, pi_zero, single_eq_pi_diag, AffineMap.pi_linear
proj πŸ“–CompOp
40 mathmath: Rep.resCoindHomEquiv_symm_apply_hom, ModuleCat.biproductIsoPi_inv_comp_Ο€, toAddMonoidHom_proj, Rep.resCoindAdjunction_counit_app_hom_hom, det_pi, AffineMap.proj_linear, iInf_ker_proj, iInf_ker_proj_le_iSup_range_single, AdicCompletion.pi_apply_coe, ModuleCat.HasLimit.productLimitCone_cone_Ο€, QuadraticMap.Ring.polarBilin_pi, lsum_apply, iSup_range_single_eq_iInf_ker_proj, proj_apply, Submodule.biInf_comap_proj, coe_proj, IsLocalizedModule.pi, IsBaseChange.pi, Matrix.proj_comp_diagLinearMap, Matrix.diagonal_toLin', pi_proj_comp, proj_pi, MultilinearMap.piFamily_single_left, pi_proj, Matrix.proj_diagonal, ModuleCat.piIsoPi_hom_ker_subtype, proj_comp_single, ModuleCat.piIsoPi_inv_kernel_ΞΉ, withSeminorms_pi, ContinuousLinearMap.coe_proj, Pi.comul_comp_proj, QuadraticMap.Ring.associated_pi, iSup_range_single_le_iInf_ker_proj, Set.Finite.convexHull_eq_image, proj_surjective, proj_comp_single_ne, Submodule.iInf_comap_proj, ModuleCat.HasLimit.productLimitCone_isLimit_lift, Matrix.entryLinearMap_eq_comp, proj_comp_single_same
single πŸ“–CompOp
34 mathmath: dotProductEquiv_symm_apply, Submodule.iSup_map_single_le, Pi.comul_comp_single, iSup_range_single, iInf_ker_proj_le_iSup_range_single, Finsupp.lcoeFun_comp_lsingle, MvPowerSeries.monomial_def, iSup_range_single_eq_iInf_ker_proj, lsum_single, Submodule.closure_coe_iSup_map_single, Matrix.ker_diagonal_toLin', Submodule.iSup_map_single, Submodule.quotientPi_symm_apply, MultilinearMap.piFamily_single_left, coe_single, pi_ext'_iff, intrinsicStar_single, proj_comp_single, single_apply, Pi.comul_single, Submodule.le_comap_single_pi, iSup_range_single_le_iInf_ker_proj, disjoint_single_single, single_eq_pi_diag, MultilinearMap.pi_ext_iff, Matrix.range_diagonal, Pi.counit_comp_single, Submodule.topologicalClosure_iSup_map_single, proj_comp_single_ne, MultilinearMap.piFamily_compLinearMap_lsingle, ker_single, lsum_symm_apply, Matrix.diagonal_comp_single, proj_comp_single_same
vecCons πŸ“–CompOp
2 mathmath: vecCons_apply, vecConsβ‚‚_apply
vecConsβ‚‚ πŸ“–CompOp
1 mathmath: vecConsβ‚‚_apply
vecEmpty πŸ“–CompOp
2 mathmath: vecEmpty_apply, vecEmptyβ‚‚_apply
vecEmptyβ‚‚ πŸ“–CompOp
1 mathmath: vecEmptyβ‚‚_apply

Theorems

NameKindAssumesProvesValidatesDepends On
apply_single πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
Pi.single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Pi.apply_single
map_zero
coe_proj πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.module
instFunLike
proj
Function.eval
β€”β€”
coe_single πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.module
instFunLike
single
Pi.single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”
compLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.Function.module
instFunLike
compLeft
β€”β€”
const_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.Function.module
instFunLike
const
β€”β€”
disjoint_single_single πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Submodule
Pi.addCommMonoid
Pi.module
Submodule.instPartialOrder
Submodule.instOrderBot
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Set.instMembership
range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
single
β€”Disjoint.mono
RingHomSurjective.ids
iSup_range_single_le_iInf_ker_proj
disjoint_compl_right
instIsConcreteLE
Disjoint.le_bot
iInf_ker_proj πŸ“–mathematicalβ€”iInf
Submodule
Pi.addCommMonoid
Pi.module
Submodule.instInfSet
ker
RingHom.id
Semiring.toNonAssocSemiring
proj
Bot.bot
Submodule.instBot
β€”bot_unique
SetLike.le_def
instIsConcreteLE
Submodule.mem_bot
iInf_ker_proj_le_iSup_range_single πŸ“–mathematicalSet
Set.instHasSubset
Set.univ
Set.instUnion
SetLike.coe
Finset
Finset.instSetLike
Submodule
Pi.addCommMonoid
Pi.module
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
iInf
Submodule.instInfSet
Set.instMembership
ker
RingHom.id
Semiring.toNonAssocSemiring
proj
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Finset.instMembership
range
RingHomSurjective.ids
single
β€”RingHomSurjective.ids
SetLike.le_def
instIsConcreteLE
Finset.sum_apply
Pi.single_eq_same
Finset.sum_eq_single
Pi.single_eq_of_ne
Submodule.sum_mem_biSup
mem_range_self
iSup_range_single πŸ“–mathematicalβ€”iSup
Submodule
Pi.addCommMonoid
Pi.module
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
single
Top.top
Submodule.instTop
β€”nonempty_fintype
RingHomSurjective.ids
iSup_pos
Finset.mem_univ
top_unique
LE.le.trans
Eq.ge
iInf_emptyset
iInf_ker_proj_le_iSup_range_single
Finset.coe_univ
Set.union_empty
subset_refl
Set.instReflSubset
iSup_range_single_eq_iInf_ker_proj πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instHasSubset
Set.univ
Set.instUnion
iSup
Submodule
Pi.addCommMonoid
Pi.module
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Set.instMembership
range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
single
iInf
Submodule.instInfSet
ker
proj
β€”le_antisymm
RingHomSurjective.ids
iSup_range_single_le_iInf_ker_proj
Set.Finite.coe_toFinset
le_trans
iInf_ker_proj_le_iSup_range_single
iSup_mono
Set.Finite.mem_toFinset
le_refl
iSup_range_single_le_iInf_ker_proj πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Submodule
Pi.addCommMonoid
Pi.module
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Set.instMembership
range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
single
iInf
Submodule.instInfSet
ker
proj
β€”iSup_le
RingHomSurjective.ids
range_le_iff_comap
RingHomCompTriple.ids
Submodule.comap_iInf
iInf_congr_Prop
instIsConcreteLE
proj_comp_single_ne
Disjoint.le_bot
zero_apply
ker_compLeft πŸ“–mathematicalβ€”ker
Pi.addCommMonoid
Pi.Function.module
RingHom.id
Semiring.toNonAssocSemiring
compLeft
Submodule.pi
Set.univ
β€”Submodule.ext
ker_pi πŸ“–mathematicalβ€”ker
Pi.addCommMonoid
Pi.module
RingHom.id
Semiring.toNonAssocSemiring
pi
iInf
Submodule
Submodule.instInfSet
β€”Submodule.ext
ker_single πŸ“–mathematicalβ€”ker
Pi.addCommMonoid
Pi.module
RingHom.id
Semiring.toNonAssocSemiring
single
Bot.bot
Submodule
Submodule.instBot
β€”ker_eq_bot_of_injective
Pi.single_injective
lsum_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
Pi.addCommMonoid
Pi.module
addCommMonoid
module
EquivLike.toFunLike
LinearEquiv.instEquivLike
lsum
Finset.sum
Finset.univ
comp
RingHomCompTriple.ids
proj
β€”RingHomInvPair.ids
lsum_piSingle πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.module
instFunLike
LinearEquiv
RingHomInvPair.ids
addCommMonoid
module
EquivLike.toFunLike
LinearEquiv.instEquivLike
lsum
Pi.single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”RingHomInvPair.ids
RingHomCompTriple.ids
sum_apply
Finset.sum_congr
apply_single
Fintype.sum_pi_single'
lsum_single πŸ“–mathematicalSMulCommClass
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
Pi.addCommMonoid
Pi.module
addCommMonoid
module
Pi.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
EquivLike.toFunLike
LinearEquiv.instEquivLike
lsum
single
id
β€”ext
RingHomInvPair.ids
Pi.smulCommClass
RingHomCompTriple.ids
coe_sum
Finset.sum_congr
Finset.sum_apply
Finset.univ_sum_single
lsum_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
Pi.addCommMonoid
Pi.module
addCommMonoid
module
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
lsum
comp
single
β€”RingHomInvPair.ids
pi_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.module
instFunLike
pi
β€”β€”
pi_apply_eq_sum_univ πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
instFunLike
Finset.sum
Finset.univ
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”pi_eq_sum_univ
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
Finset.sum_congr
map_smul
SemilinearMapClass.toMulActionSemiHomClass
pi_comp πŸ“–mathematicalβ€”comp
Pi.addCommMonoid
Pi.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
pi
β€”RingHomCompTriple.ids
pi_eq_zero πŸ“–mathematicalβ€”pi
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.module
instZero
β€”β€”
pi_ext πŸ“–β€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.module
instFunLike
Pi.single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”toAddMonoidHom_injective
AddMonoidHom.functions_ext
pi_ext' πŸ“–β€”comp
Pi.addCommMonoid
Pi.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
single
β€”β€”RingHomCompTriple.ids
pi_ext
congr_fun
pi_ext'_iff πŸ“–mathematicalβ€”comp
Pi.addCommMonoid
Pi.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
single
β€”RingHomCompTriple.ids
pi_ext'
pi_ext_iff πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.module
instFunLike
Pi.single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”pi_ext
pi_proj πŸ“–mathematicalβ€”pi
Pi.addCommMonoid
Pi.module
proj
id
β€”β€”
pi_proj_comp πŸ“–mathematicalβ€”pi
comp
Pi.addCommMonoid
Pi.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
proj
β€”RingHomCompTriple.ids
pi_zero πŸ“–mathematicalβ€”pi
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instZero
Pi.addCommMonoid
Pi.module
β€”ext
proj_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.module
instFunLike
proj
β€”β€”
proj_comp_single πŸ“–mathematicalβ€”comp
Pi.addCommMonoid
Pi.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
proj
single
diag
β€”RingHomCompTriple.ids
single_eq_pi_diag
proj_pi
proj_comp_single_ne πŸ“–mathematicalβ€”comp
Pi.addCommMonoid
Pi.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
proj
single
LinearMap
instZero
β€”ext
RingHomCompTriple.ids
Pi.single_eq_of_ne
proj_comp_single_same πŸ“–mathematicalβ€”comp
Pi.addCommMonoid
Pi.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
proj
single
id
β€”ext
RingHomCompTriple.ids
Pi.single_eq_same
proj_pi πŸ“–mathematicalβ€”comp
Pi.addCommMonoid
Pi.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
proj
pi
β€”RingHomCompTriple.ids
proj_surjective πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.module
instFunLike
proj
β€”Function.surjective_eval
Zero.instNonempty
range_compLeft πŸ“–mathematicalβ€”range
Pi.addCommMonoid
Pi.Function.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
compLeft
Submodule.pi
Set.univ
β€”Submodule.ext
RingHomSurjective.ids
single_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.module
instFunLike
single
Pi.single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”
single_eq_pi_diag πŸ“–mathematicalβ€”single
pi
diag
β€”ext
update_apply
sum_single_apply πŸ“–mathematicalβ€”Finset.sum
Pi.addCommMonoid
Finset.univ
Pi.single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Finset.sum_apply
Finset.sum_pi_single
toAddMonoidHom_proj πŸ“–mathematicalβ€”toAddMonoidHom
Pi.addCommMonoid
Pi.module
RingHom.id
Semiring.toNonAssocSemiring
proj
Pi.evalAddMonoidHom
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”
update_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
Function.update
β€”Function.update_self
Function.update_of_ne
vecCons_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.Function.module
instFunLike
vecCons
Matrix.vecCons
β€”β€”
vecConsβ‚‚_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.Function.module
addCommMonoid
module
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
CommMonoid.toMonoid
instFunLike
vecConsβ‚‚
vecCons
β€”smulCommClass_self
Function.smulCommClass
vecEmpty_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.Function.module
instFunLike
vecEmpty
Matrix.vecEmpty
β€”β€”
vecEmptyβ‚‚_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Pi.Function.module
addCommMonoid
module
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
CommMonoid.toMonoid
instFunLike
vecEmptyβ‚‚
vecEmpty
β€”Function.smulCommClass
smulCommClass_self

LinearMap.CompatibleSMul

Theorems

NameKindAssumesProvesValidatesDepends On
pi πŸ“–mathematicalβ€”LinearMap.CompatibleSMul
Pi.addCommMonoid
Function.hasSMul
Pi.Function.module
β€”LinearMap.map_smul_of_tower
RingHomCompTriple.ids

Module

Theorems

NameKindAssumesProvesValidatesDepends On
pi_induction πŸ“–mathematicalNonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
PUnit.commRing
PUnit.module
Prod.instAddCommMonoid
Prod.instModule
Pi.addCommMonoid
Pi.module
β€”RingHomInvPair.ids
nonempty_fintype
Fintype.induction_empty_option
Unique.instSubsingleton
PEmpty.instIsEmpty
pi_induction' πŸ“–mathematicalPUnit.addCommGroup
PUnit.module
Ring.toSemiring
Prod.instAddCommGroup
Prod.instModule
AddCommGroup.toAddCommMonoid
Pi.addCommGroup
Pi.module
β€”RingHomInvPair.ids
nonempty_fintype
Fintype.induction_empty_option
Unique.instSubsingleton
PEmpty.instIsEmpty

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
mem_span_range_single_inl_iff πŸ“–mathematicalβ€”Submodule
addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Function.module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Submodule.span_induction
single_eq_of_ne
add_zero
MulZeroClass.mul_zero
Finset.sum_apply
Finset.sum_congr
single_apply
mul_ite
mul_one
Finset.sum_ite_eq
Finset.sum_const_zero
sum_mem
Submodule.addSubmonoidClass
SMulMemClass.smul_mem
Submodule.smulMemClass
Submodule.subset_span
Set.mem_range_self

Submodule

Definitions

NameCategoryTheorems
pi πŸ“–CompOp
30 mathmath: fg_pi, pi_univ_bot, quotientPi_aux.map_smul, iSup_map_single_le, mem_pi, DFinsupp.range_mapRangeLinearMap, DirectSum.ker_lmap, biInf_comap_proj, pi_mono, Module.jacobson_pi_le, pi_empty, pi_top, quotientPi_apply, iSup_map_single, quotientPi_symm_apply, DFinsupp.ker_mapRangeLinearMap, quotientPi_aux.map_add, Subalgebra.pi_toSubsemiring, Subalgebra.coe_pi, quotientPi_aux.left_inv, LinearMap.ker_compLeft, DirectSum.range_lmap, LinearMap.range_compLeft, le_comap_single_pi, coe_pi, quotientPiLift_mk, quotientPi_aux.right_inv, topologicalClosure_iSup_map_single, iInf_comap_proj, Subalgebra.pi_toSubmodule

Theorems

NameKindAssumesProvesValidatesDepends On
biInf_comap_proj πŸ“–mathematicalβ€”iInf
Submodule
Pi.addCommMonoid
Pi.module
instInfSet
Set
Set.instMembership
comap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.proj
pi
β€”ext
coe_pi πŸ“–mathematicalβ€”SetLike.coe
Submodule
Pi.addCommMonoid
Pi.module
setLike
pi
Set.pi
β€”β€”
iInf_comap_proj πŸ“–mathematicalβ€”iInf
Submodule
Pi.addCommMonoid
Pi.module
instInfSet
comap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.proj
pi
Set.univ
β€”ext
iSup_map_single πŸ“–mathematicalβ€”iSup
Submodule
Pi.addCommMonoid
Pi.module
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.single
pi
Set.univ
β€”nonempty_fintype
RingHomSurjective.ids
LE.le.antisymm
iSup_map_single_le
Finset.univ_sum_single
sum_mem_iSup
mem_map_of_mem
iSup_map_single_le πŸ“–mathematicalβ€”Submodule
Pi.addCommMonoid
Pi.module
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.single
pi
β€”iSup_le
RingHomSurjective.ids
map_le_iff_le_comap
le_comap_single_pi
le_comap_single_pi πŸ“–mathematicalβ€”Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
Pi.addCommMonoid
Pi.module
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.single
pi
β€”mem_comap
mem_pi
eq_or_ne
Pi.single_eq_same
Pi.single_eq_of_ne
AddSubmonoidClass.toZeroMemClass
addSubmonoidClass
mem_pi πŸ“–mathematicalβ€”Submodule
Pi.addCommMonoid
Pi.module
SetLike.instMembership
setLike
pi
β€”β€”
pi_empty πŸ“–mathematicalβ€”pi
Set
Set.instEmptyCollection
Top.top
Submodule
Pi.addCommMonoid
Pi.module
instTop
β€”SetLike.coe_injective
Set.empty_pi
pi_mono πŸ“–mathematicalSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Pi.addCommMonoid
Pi.module
pi
β€”Set.pi_mono
pi_top πŸ“–mathematicalβ€”pi
Top.top
Submodule
instTop
Pi.addCommMonoid
Pi.module
β€”SetLike.coe_injective
Set.pi_univ
pi_univ_bot πŸ“–mathematicalβ€”pi
Set.univ
Bot.bot
Submodule
instBot
Pi.addCommMonoid
Pi.module
β€”le_bot_iff

---

← Back to Index