| Name | Category | Theorems |
compLeft π | CompOp | 14 mathmath: groupCohomology.cochainsMap_f_1_comp_cochainsIsoβ_apply, groupCohomology.mapCocyclesβ_comp_i_apply, groupCohomology.cochainsMap_f_3_comp_cochainsIsoβ_apply, mapMatrixModule_apply, groupCohomology.cochainsMap_f_2_comp_cochainsIsoβ_apply, compLeft_apply, groupCohomology.cochainsMap_f, groupCohomology.mapCocyclesβ_comp_i_apply, Rep.coindMap_hom, ker_compLeft, groupCohomology.cochainsMap_f_hom, range_compLeft, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, IsBaseChange.finitePow
|
const π | CompOp | 1 mathmath: const_apply
|
diag π | CompOp | 2 mathmath: proj_comp_single, single_eq_pi_diag
|
iInfKerProjEquiv π | CompOp | β |
lsum π | CompOp | 7 mathmath: Fintype.linearIndependent_iff', lsum_apply, Fintype.linearIndependent_iff'β, lsum_single, lsum_piSingle, lsum_symm_apply, Submodule.piQuotientLift_mk
|
pi π | CompOp | 23 mathmath: Rep.resCoindHomEquiv_apply_hom, ker_pi, det_pi, Rep.resCoindAdjunction_unit_app_hom_hom, DFinsupp.injective_pi_lapply, Ideal.pi_mkQ_surjective, Ideal.pi_tensorProductMk_quotient_surjective, pi_apply, pi_eq_zero, IsLocalizedModule.pi, ContinuousLinearMap.coe_pi, IsBaseChange.pi, Matrix.diagonal_toLin', Ideal.ker_tensorProductMk_quotient, pi_proj_comp, Submodule.pi_liftQ_eq_liftQ_pi, pi_comp, proj_pi, pi_proj, Ideal.pi_mkQ_rTensor, pi_zero, single_eq_pi_diag, AffineMap.pi_linear
|
proj π | CompOp | 40 mathmath: Rep.resCoindHomEquiv_symm_apply_hom, ModuleCat.biproductIsoPi_inv_comp_Ο, toAddMonoidHom_proj, Rep.resCoindAdjunction_counit_app_hom_hom, det_pi, AffineMap.proj_linear, iInf_ker_proj, iInf_ker_proj_le_iSup_range_single, AdicCompletion.pi_apply_coe, ModuleCat.HasLimit.productLimitCone_cone_Ο, QuadraticMap.Ring.polarBilin_pi, lsum_apply, iSup_range_single_eq_iInf_ker_proj, proj_apply, Submodule.biInf_comap_proj, coe_proj, IsLocalizedModule.pi, IsBaseChange.pi, Matrix.proj_comp_diagLinearMap, Matrix.diagonal_toLin', pi_proj_comp, proj_pi, MultilinearMap.piFamily_single_left, pi_proj, Matrix.proj_diagonal, ModuleCat.piIsoPi_hom_ker_subtype, proj_comp_single, ModuleCat.piIsoPi_inv_kernel_ΞΉ, withSeminorms_pi, ContinuousLinearMap.coe_proj, Pi.comul_comp_proj, QuadraticMap.Ring.associated_pi, iSup_range_single_le_iInf_ker_proj, Set.Finite.convexHull_eq_image, proj_surjective, proj_comp_single_ne, Submodule.iInf_comap_proj, ModuleCat.HasLimit.productLimitCone_isLimit_lift, Matrix.entryLinearMap_eq_comp, proj_comp_single_same
|
single π | CompOp | 34 mathmath: dotProductEquiv_symm_apply, Submodule.iSup_map_single_le, Pi.comul_comp_single, iSup_range_single, iInf_ker_proj_le_iSup_range_single, Finsupp.lcoeFun_comp_lsingle, MvPowerSeries.monomial_def, iSup_range_single_eq_iInf_ker_proj, lsum_single, Submodule.closure_coe_iSup_map_single, Matrix.ker_diagonal_toLin', Submodule.iSup_map_single, Submodule.quotientPi_symm_apply, MultilinearMap.piFamily_single_left, coe_single, pi_ext'_iff, intrinsicStar_single, proj_comp_single, single_apply, Pi.comul_single, Submodule.le_comap_single_pi, iSup_range_single_le_iInf_ker_proj, disjoint_single_single, single_eq_pi_diag, MultilinearMap.pi_ext_iff, Matrix.range_diagonal, Pi.counit_comp_single, Submodule.topologicalClosure_iSup_map_single, proj_comp_single_ne, MultilinearMap.piFamily_compLinearMap_lsingle, ker_single, lsum_symm_apply, Matrix.diagonal_comp_single, proj_comp_single_same
|
vecCons π | CompOp | 2 mathmath: vecCons_apply, vecConsβ_apply
|
vecConsβ π | CompOp | 1 mathmath: vecConsβ_apply
|
vecEmpty π | CompOp | 2 mathmath: vecEmpty_apply, vecEmptyβ_apply
|
vecEmptyβ π | CompOp | 1 mathmath: vecEmptyβ_apply
|