| Name | Category | Theorems |
Eqv đ | CompData | 1 mathmath: FreeAddMonoid.toPiTensorProduct
|
distribMulAction' đ | CompOp | 3 mathmath: mapL_smul, piTensorHomMapFunâ_smul, map_update_smul
|
hasSMul' đ | CompOp | 4 mathmath: smulCommClass', smul_tprodCoeff', isScalarTower', smul_add
|
instAddCommGroup đ | CompOp | 15 mathmath: mapL_smul, projectiveSeminorm_apply, projectiveSeminorm_tprod_le, injectiveSeminorm_le_projectiveSeminorm, norm_eval_le_injectiveSeminorm, dualSeminorms_bounded, injectiveSeminorm_apply, mapLMultilinear_apply_apply, toDualContinuousMultilinearMap_le_projectiveSeminorm, norm_eval_le_projectiveSeminorm, injectiveSeminorm_tprod_le, exteriorPower.toTensorPower_apply_ÎčMulti, mapLMultilinear_opNorm, injectiveSeminorm_def, mapLMultilinear_toFun_apply
|
instAddCommMonoid đ | CompOp | 167 mathmath: mapL_id, TensorAlgebra.ofDirectSum_of_tprod, lift_reindex, lift.tprod, liftAlgHom_apply, tmulEquiv_symm_apply, mapLMonoidHom_apply, isEmptyEquiv_apply_tprod, dualDistribEquivOfBasis_symm_apply, FreeAddMonoid.toPiTensorProduct, TensorPower.cast_cast, ofDirectSumEquiv_tprod_lof, lift_reindex_symm, map_reindex_symm, reindex_reindex, subsingletonEquiv_symm_apply, TensorPower.cast_trans, TensorAlgebra.toDirectSum_tensorPower_tprod, TensorPower.gMul_eq_coe_linearMap, reindex_refl, SemiconjBy.tprod, toDualContinuousMultilinearMap_apply_apply, mul_assoc, map_comp, mapL_one, mapL_smul, TensorPower.algebraMapâ_mul, TensorAlgebra.toDirectSum_ofDirectSum, reindex_comp_tprod, lifts_add, tprod_prod, ofFinsuppEquiv'_tprod_single, TensorPower.cast_symm, subsingletonEquiv_apply_tprod, projectiveSeminorm_tprod_le, ofDirectSumEquiv_symm_lof_tprod, tprodL_toFun, ofFinsuppEquiv_tprod_single, TensorPower.mul_assoc, congr_symm_tprod, constantBaseRingEquiv_tprod, TensorPower.algebraMapâ_one, TensorAlgebra.equivDirectSum_apply, liftAux.smul, mapL_coe, ofFinsuppEquiv_symm_single_tprod, reindex_trans, liftIsometry_tprodL, one_def, reindex_tprod, tprodMonoidHom_apply, TensorPower.galgebra_toFun_def, piTensorHomMap_tprod_tprod, lifts_zero, norm_eval_le_injectiveSeminorm, tprodCoeff_eq_smul_tprod, TensorPower.tprod_mul_tprod, liftEquiv_symm_apply, reindex_symm, liftEquiv_apply, liftAux_tprodCoeff, TensorPower.algebraMapâ_eq_smul_one, ofDFinsuppEquiv_tprod_apply, dualDistribInvOfBasis_apply, mapL_mul, zero_tprodCoeff', mapL_comp, piTensorHomMap_tprod_eq_map, singleAlgHom_apply, lift_comp_reindex, dualDistribEquivOfBasis_apply_apply, TensorPower.multilinearMapToDual_apply_tprod, mapâ_tprod_tprod, TensorAlgebra.ofDirectSum_toDirectSum, map_mul, TensorPower.mul_one, ofFinsuppEquiv_apply, map_one, mapMultilinear_apply, dualDistrib_apply, ext_iff, TensorPower.toTensorAlgebra_gMul, TensorPower.toTensorAlgebra_gOne, tprod_eq_tprodCoeff_one, isEmptyEquiv_symm_apply, subsingletonEquiv_symm_apply', SymmetricPower.range_mk, piTensorHomMapFunâ_smul, tmulEquivDep_symm_apply, liftAux_tprod, piTensorHomMapâ_tprod_tprod_tprod, tmulEquivDep_apply, mul_def, mem_lifts_iff, TensorAlgebra.toDirectSum_comp_ofDirectSum, ofDFinsuppEquiv_tprod_single, map_tprod, TensorPower.algebraMapâ_mul_algebraMapâ, mapLMultilinear_apply_apply, TensorPower.gMul_def, TensorPower.list_prod_gradedMonoid_mk_single, mapL_apply, liftIsometry_comp_mapL, one_mul, liftIsometry_symm_apply, tprod_noncommProd, TensorPower.cast_refl, piTensorHomMapFunâ_add, mul_one, tmulEquiv_apply, map_comp_reindex_symm, mapL_opNorm, toDualContinuousMultilinearMap_le_projectiveSeminorm, TensorPower.cast_tprod, dualDistrib_dualDistribInvOfBasis_right_inverse, mul_tprod_tprod, TensorPower.cast_eq_cast, tprodL_apply, lift_tprod, liftIsometry_apply_apply, TensorPower.gOne_def, TensorPower.one_mul, norm_eval_le_projectiveSeminorm, TensorAlgebra.equivDirectSum_symm_apply, lift_comp_map, add_tprodCoeff, TensorAlgebra.mk_reindex_fin_cast, Commute.tprod, ofFinsuppEquiv'_apply_apply, mapL_pow, map_reindex, TensorPower.mul_algebraMapâ, TensorAlgebra.mk_reindex_cast, mapMonoidHom_apply, lift_comp_reindex_symm, map_update_smul, ofDFinsuppEquiv_symm_single_tprod, span_tprod_eq_top, map_comp_reindex_eq, map_update_add, TensorPower.toTensorAlgebra_galgebra_toFun, TensorAlgebra.toDirectSum_Îč, zero_tprodCoeff, ofDirectSumEquiv_tprod_apply, injectiveSeminorm_tprod_le, Basis.piTensorProduct_repr_tprod_apply, TensorAlgebra.ofDirectSum_comp_toDirectSum, mapL_add, mul_comm, exteriorPower.toTensorPower_apply_ÎčMulti, map_pow, tprod_mul_tprod, dualDistrib_dualDistribInvOfBasis_left_inverse, algebraMap_apply, smul_add, smul_tprod_mul_smul_tprod, mapLMultilinear_opNorm, TensorPower.toTensorAlgebra_tprod, Basis.piTensorProduct_apply, congr_tprod, map_range_eq_span_tprod, add_tprodCoeff', map_id, mapLMultilinear_toFun_apply, TensorPower.pairingDual_tprod_tprod, tprodL_coe, lift_symm
|
instInhabited đ | CompOp | â |
instModule đ | CompOp | 161 mathmath: mapL_id, TensorAlgebra.ofDirectSum_of_tprod, lift_reindex, lift.tprod, liftAlgHom_apply, tmulEquiv_symm_apply, mapLMonoidHom_apply, isEmptyEquiv_apply_tprod, dualDistribEquivOfBasis_symm_apply, FreeAddMonoid.toPiTensorProduct, TensorPower.cast_cast, ofDirectSumEquiv_tprod_lof, lift_reindex_symm, map_reindex_symm, reindex_reindex, subsingletonEquiv_symm_apply, TensorPower.cast_trans, TensorAlgebra.toDirectSum_tensorPower_tprod, TensorPower.gMul_eq_coe_linearMap, reindex_refl, SemiconjBy.tprod, toDualContinuousMultilinearMap_apply_apply, mul_assoc, map_comp, mapL_one, mapL_smul, TensorPower.algebraMapâ_mul, TensorAlgebra.toDirectSum_ofDirectSum, reindex_comp_tprod, tprod_prod, ofFinsuppEquiv'_tprod_single, TensorPower.cast_symm, subsingletonEquiv_apply_tprod, projectiveSeminorm_tprod_le, ofDirectSumEquiv_symm_lof_tprod, tprodL_toFun, ofFinsuppEquiv_tprod_single, TensorPower.mul_assoc, congr_symm_tprod, constantBaseRingEquiv_tprod, TensorPower.algebraMapâ_one, TensorAlgebra.equivDirectSum_apply, mapL_coe, ofFinsuppEquiv_symm_single_tprod, reindex_trans, liftIsometry_tprodL, one_def, reindex_tprod, tprodMonoidHom_apply, TensorPower.galgebra_toFun_def, piTensorHomMap_tprod_tprod, norm_eval_le_injectiveSeminorm, tprodCoeff_eq_smul_tprod, TensorPower.tprod_mul_tprod, liftEquiv_symm_apply, reindex_symm, liftEquiv_apply, TensorPower.algebraMapâ_eq_smul_one, ofDFinsuppEquiv_tprod_apply, dualDistribInvOfBasis_apply, mapL_mul, mapL_comp, piTensorHomMap_tprod_eq_map, singleAlgHom_apply, lift_comp_reindex, dualDistribEquivOfBasis_apply_apply, TensorPower.multilinearMapToDual_apply_tprod, mapâ_tprod_tprod, TensorAlgebra.ofDirectSum_toDirectSum, dualSeminorms_bounded, map_mul, TensorPower.mul_one, ofFinsuppEquiv_apply, injectiveSeminorm_apply, map_one, mapMultilinear_apply, dualDistrib_apply, ext_iff, TensorPower.toTensorAlgebra_gMul, TensorPower.toTensorAlgebra_gOne, tprod_eq_tprodCoeff_one, isEmptyEquiv_symm_apply, subsingletonEquiv_symm_apply', SymmetricPower.range_mk, piTensorHomMapFunâ_smul, tmulEquivDep_symm_apply, liftAux_tprod, piTensorHomMapâ_tprod_tprod_tprod, tmulEquivDep_apply, mul_def, mem_lifts_iff, TensorAlgebra.toDirectSum_comp_ofDirectSum, ofDFinsuppEquiv_tprod_single, map_tprod, TensorPower.algebraMapâ_mul_algebraMapâ, mapLMultilinear_apply_apply, TensorPower.gMul_def, TensorPower.list_prod_gradedMonoid_mk_single, mapL_apply, liftIsometry_comp_mapL, one_mul, liftIsometry_symm_apply, tprod_noncommProd, TensorPower.cast_refl, piTensorHomMapFunâ_add, mul_one, tmulEquiv_apply, map_comp_reindex_symm, mapL_opNorm, toDualContinuousMultilinearMap_le_projectiveSeminorm, TensorPower.cast_tprod, dualDistrib_dualDistribInvOfBasis_right_inverse, mul_tprod_tprod, TensorPower.cast_eq_cast, tprodL_apply, lift_tprod, liftIsometry_apply_apply, TensorPower.gOne_def, TensorPower.one_mul, norm_eval_le_projectiveSeminorm, TensorAlgebra.equivDirectSum_symm_apply, lift_comp_map, TensorAlgebra.mk_reindex_fin_cast, Commute.tprod, ofFinsuppEquiv'_apply_apply, mapL_pow, map_reindex, TensorPower.mul_algebraMapâ, TensorAlgebra.mk_reindex_cast, mapMonoidHom_apply, lift_comp_reindex_symm, map_update_smul, ofDFinsuppEquiv_symm_single_tprod, span_tprod_eq_top, map_comp_reindex_eq, map_update_add, TensorPower.toTensorAlgebra_galgebra_toFun, TensorAlgebra.toDirectSum_Îč, ofDirectSumEquiv_tprod_apply, injectiveSeminorm_tprod_le, Basis.piTensorProduct_repr_tprod_apply, TensorAlgebra.ofDirectSum_comp_toDirectSum, mapL_add, mul_comm, exteriorPower.toTensorPower_apply_ÎčMulti, map_pow, tprod_mul_tprod, dualDistrib_dualDistribInvOfBasis_left_inverse, algebraMap_apply, smul_tprod_mul_smul_tprod, mapLMultilinear_opNorm, TensorPower.toTensorAlgebra_tprod, Basis.piTensorProduct_apply, congr_tprod, map_range_eq_span_tprod, map_id, injectiveSeminorm_def, mapLMultilinear_toFun_apply, TensorPower.pairingDual_tprod_tprod, tprodL_coe, lift_symm
|
instSMul đ | CompOp | 24 mathmath: FreeAddMonoid.toPiTensorProduct, SymmetricPower.smul, lifts_smul, projectiveSeminorm_apply, TensorPower.algebraMapâ_mul, projectiveSeminorm_tprod_le, instSMulCommClass, liftAux.smul, injectiveSeminorm_le_projectiveSeminorm, norm_eval_le_injectiveSeminorm, tprodCoeff_eq_smul_tprod, TensorPower.algebraMapâ_eq_smul_one, dualDistribInvOfBasis_apply, injectiveSeminorm_apply, isEmptyEquiv_symm_apply, piTensorHomMapFunâ_smul, mem_lifts_iff, toDualContinuousMultilinearMap_le_projectiveSeminorm, norm_eval_le_projectiveSeminorm, TensorPower.mul_algebraMapâ, injectiveSeminorm_tprod_le, smul_tprod_mul_smul_tprod, instIsScalarTower, injectiveSeminorm_def
|
isEmptyEquiv đ | CompOp | 2 mathmath: isEmptyEquiv_apply_tprod, isEmptyEquiv_symm_apply
|
liftAddHom đ | CompOp | â |
liftAux đ | CompOp | 5 mathmath: liftAux.smul, liftAux_tprodCoeff, liftAux_tprod, mapLMultilinear_apply_apply, mapLMultilinear_toFun_apply
|
lifts đ | CompOp | 5 mathmath: projectiveSeminorm_apply, bddBelow_projectiveSemiNormAux, lifts_zero, mem_lifts_iff, nonempty_lifts
|
map đ | CompOp | 19 mathmath: map_reindex_symm, map_comp, mapL_coe, piTensorHomMap_tprod_eq_map, map_mul, map_one, mapMultilinear_apply, map_tprod, mapL_apply, map_comp_reindex_symm, lift_comp_map, map_reindex, mapMonoidHom_apply, map_update_smul, map_comp_reindex_eq, map_update_add, map_pow, map_range_eq_span_tprod, map_id
|
mapIncl đ | CompOp | â |
mapMonoidHom đ | CompOp | 1 mathmath: mapMonoidHom_apply
|
mapMultilinear đ | CompOp | 1 mathmath: mapMultilinear_apply
|
mapâ đ | CompOp | 1 mathmath: mapâ_tprod_tprod
|
module' đ | CompOp | â |
piTensorHomMap đ | CompOp | 3 mathmath: piTensorHomMap_tprod_tprod, piTensorHomMap_tprod_eq_map, dualDistribEquivOfBasis_apply_apply
|
piTensorHomMapFunâ đ | CompOp | 2 mathmath: piTensorHomMapFunâ_smul, piTensorHomMapFunâ_add
|
piTensorHomMapâ đ | CompOp | 1 mathmath: piTensorHomMapâ_tprod_tprod_tprod
|
reindex đ | CompOp | 16 mathmath: lift_reindex, lift_reindex_symm, map_reindex_symm, reindex_reindex, reindex_refl, reindex_comp_tprod, reindex_trans, reindex_tprod, reindex_symm, lift_comp_reindex, map_comp_reindex_symm, TensorAlgebra.mk_reindex_fin_cast, map_reindex, TensorAlgebra.mk_reindex_cast, lift_comp_reindex_symm, map_comp_reindex_eq
|
subsingletonEquiv đ | CompOp | 3 mathmath: subsingletonEquiv_symm_apply, subsingletonEquiv_apply_tprod, subsingletonEquiv_symm_apply'
|
tmulEquiv đ | CompOp | 2 mathmath: tmulEquiv_symm_apply, tmulEquiv_apply
|
tmulEquivDep đ | CompOp | 2 mathmath: tmulEquivDep_symm_apply, tmulEquivDep_apply
|
tprod đ | CompOp | 74 mathmath: TensorAlgebra.ofDirectSum_of_tprod, lift.tprod, tmulEquiv_symm_apply, isEmptyEquiv_apply_tprod, FreeAddMonoid.toPiTensorProduct, ofDirectSumEquiv_tprod_lof, subsingletonEquiv_symm_apply, TensorAlgebra.toDirectSum_tensorPower_tprod, SemiconjBy.tprod, reindex_comp_tprod, tprod_prod, ofFinsuppEquiv'_tprod_single, subsingletonEquiv_apply_tprod, projectiveSeminorm_tprod_le, ofDirectSumEquiv_symm_lof_tprod, tprodL_toFun, ofFinsuppEquiv_tprod_single, congr_symm_tprod, constantBaseRingEquiv_tprod, ofFinsuppEquiv_symm_single_tprod, one_def, reindex_tprod, tprodMonoidHom_apply, piTensorHomMap_tprod_tprod, tprodCoeff_eq_smul_tprod, TensorPower.tprod_mul_tprod, ofDFinsuppEquiv_tprod_apply, dualDistribInvOfBasis_apply, piTensorHomMap_tprod_eq_map, singleAlgHom_apply, TensorPower.multilinearMapToDual_apply_tprod, mapâ_tprod_tprod, ofFinsuppEquiv_apply, dualDistrib_apply, ext_iff, tprod_eq_tprodCoeff_one, isEmptyEquiv_symm_apply, subsingletonEquiv_symm_apply', tmulEquivDep_symm_apply, liftAux_tprod, piTensorHomMapâ_tprod_tprod_tprod, tmulEquivDep_apply, mem_lifts_iff, ofDFinsuppEquiv_tprod_single, map_tprod, TensorPower.list_prod_gradedMonoid_mk_single, one_mul, tprod_noncommProd, mul_one, tmulEquiv_apply, TensorPower.cast_tprod, mul_tprod_tprod, tprodL_apply, lift_tprod, TensorPower.gOne_def, Commute.tprod, ofFinsuppEquiv'_apply_apply, ofDFinsuppEquiv_symm_single_tprod, span_tprod_eq_top, TensorAlgebra.toDirectSum_Îč, ofDirectSumEquiv_tprod_apply, injectiveSeminorm_tprod_le, Basis.piTensorProduct_repr_tprod_apply, exteriorPower.toTensorPower_apply_ÎčMulti, tprod_mul_tprod, algebraMap_apply, smul_tprod_mul_smul_tprod, TensorPower.toTensorAlgebra_tprod, Basis.piTensorProduct_apply, congr_tprod, map_range_eq_span_tprod, TensorPower.pairingDual_tprod_tprod, tprodL_coe, lift_symm
|
tprodCoeff đ | CompOp | 10 mathmath: tprodCoeff_eq_smul_tprod, liftAux_tprodCoeff, zero_tprodCoeff', tprod_eq_tprodCoeff_one, smul_tprodCoeff_aux, smul_tprodCoeff', smul_tprodCoeff, add_tprodCoeff, zero_tprodCoeff, add_tprodCoeff'
|
«termâšâ[_]_,_» đ | CompOp | â |