Documentation Verification Report

Basic

πŸ“ Source: Mathlib/LinearAlgebra/Projectivization/Basic.lean

Statistics

MetricCount
Definitionstermβ„™, Projectivization, equivSubmodule, map, mk, mk', mk'', rep, submodule, projectivizationSetoid
10
Theoremsexists_smul_eq_mk_rep, finrank_submodule, ind, instFiniteDimensionalSubtypeMemSubmoduleSubmodule, instNonemptyOfNontrivial, lift_mk, map_comp, map_id, map_injective, map_mk, mk''_submodule, mk'_eq_mk, mk_eq_mk_iff, mk_eq_mk_iff', mk_rep, rep_nonzero, submodule_eq, submodule_injective, submodule_mk, submodule_mk''
20
Total30

LinearAlgebra.Projectivization

Definitions

NameCategoryTheorems
termβ„™ πŸ“–CompOpβ€”

Projectivization

Definitions

NameCategoryTheorems
equivSubmodule πŸ“–CompOpβ€”
map πŸ“–CompOp
6 mathmath: map_id, map_injective, smul_def, map_comp, generalLinearGroup_smul_def, map_mk
mk πŸ“–CompOpβ€”
mk' πŸ“–CompOp
1 mathmath: mk'_eq_mk
mk'' πŸ“–CompOp
2 mathmath: submodule_mk'', mk''_submodule
rep πŸ“–CompOp
5 mathmath: submodule_eq, mk_rep, exists_smul_eq_mk_rep, dependent_iff, independent_iff
submodule πŸ“–CompOp
9 mathmath: submodule_mk'', submodule_eq, finrank_submodule, submodule_mk, independent_iff_iSupIndep, submodule_injective, Submodule.mem_projectivization_iff_submodule_le, instFiniteDimensionalSubtypeMemSubmoduleSubmodule, mk''_submodule

Theorems

NameKindAssumesProvesValidatesDepends On
exists_smul_eq_mk_rep πŸ“–mathematicalβ€”Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Units.instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
rep
β€”rep_nonzero
mk_eq_mk_iff
mk_rep
finrank_submodule πŸ“–mathematicalβ€”Module.finrank
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
submodule
Submodule.addCommMonoid
Submodule.module
β€”submodule_eq
finrank_span_singleton
rep_nonzero
ind πŸ“–β€”β€”β€”β€”Quotient.ind'
instFiniteDimensionalSubtypeMemSubmoduleSubmodule πŸ“–mathematicalβ€”FiniteDimensional
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
submodule
Submodule.addCommGroup
DivisionRing.toRing
Submodule.module
β€”rep_nonzero
mk_rep
FiniteDimensional.span_singleton
instNonemptyOfNontrivial πŸ“–mathematicalβ€”Projectivizationβ€”exists_ne
lift_mk πŸ“–mathematicalβ€”lift
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
map_comp πŸ“–mathematicalDFunLike.coe
LinearMap
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
LinearMap.comp
map
Projectivization
β€”β€”
map_id πŸ“–mathematicalβ€”map
RingHom.id
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
LinearMap.id
AddCommGroup.toAddCommMonoid
LinearEquiv.injective
RingHomInvPair.ids
LinearEquiv.refl
Projectivization
β€”LinearEquiv.injective
RingHomInvPair.ids
map_injective πŸ“–mathematicalDFunLike.coe
LinearMap
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
Projectivization
map
β€”ind
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
LinearMap.map_smulβ‚›β‚—
RingHomInvPair.comp_apply_eqβ‚‚
map_mk πŸ“–mathematicalDFunLike.coe
LinearMap
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
map
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
β€”β€”
mk''_submodule πŸ“–mathematicalβ€”mk''
submodule
finrank_submodule
β€”Equiv.symm_apply_apply
mk'_eq_mk πŸ“–mathematicalβ€”mk'
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
mk_eq_mk_iff πŸ“–mathematicalβ€”Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Units.instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”Quotient.eq''
mk_eq_mk_iff' πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”mk_eq_mk_iff
zero_smul
mk_rep πŸ“–mathematicalβ€”rep
rep_nonzero
β€”Quotient.out_eq'
rep_nonzero πŸ“–β€”β€”β€”β€”β€”
submodule_eq πŸ“–mathematicalβ€”submodule
Submodule.span
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instSingletonSet
rep
β€”rep_nonzero
mk_rep
submodule_injective πŸ“–mathematicalβ€”Projectivization
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
submodule
β€”ind
mk_eq_mk_iff
Submodule.span_singleton_eq_span_singleton
DivisionRing.isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
submodule_mk πŸ“–mathematicalβ€”submodule
Submodule.span
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instSingletonSet
β€”β€”
submodule_mk'' πŸ“–mathematicalModule.finrank
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
submodule
mk''
β€”Equiv.apply_symm_apply

(root)

Definitions

NameCategoryTheorems
Projectivization πŸ“–CompOp
45 mathmath: Projectivization.dependent_pair_iff_eq, Projectivization.map_id, Projectivization.Subspace.span_sup, Projectivization.card'', Projectivization.Subspace.span_empty, Projectivization.Subspace.span_coe, Submodule.mk_mem_projectivization_iff, Projectivization.finite_of_finite, Projectivization.isEmpty_of_subsingleton, Projectivization.finite_iff_of_finite, Projectivization.submodule_injective, Projectivization.card, Configuration.ofField.instNondegenerateProjectivizationForallFinOfNatNat, OnePoint.equivProjectivization_symm_apply_mk, Projectivization.Subspace.subset_span, Projectivization.independent_pair_iff_ne, Projectivization.map_injective, Submodule.mem_projectivization_iff_submodule_le, Projectivization.card_of_finrank, Projectivization.Subspace.sup_span, Projectivization.Subspace.monotone_span, Projectivization.cross_mk, Projectivization.dependent_iff, Projectivization.card', Projectivization.Subspace.span_le_subspace_iff, Projectivization.smul_def, Projectivization.map_comp, OnePoint.smul_infty_def, Projectivization.Subspace.mem_span, Projectivization.cross_mk_of_ne, Projectivization.Subspace.span_union, Projectivization.generalLinearGroup_smul_def, Projectivization.Subspace.span_univ, Projectivization.card_of_finrank_two, OnePoint.equivProjectivization_apply_coe, Configuration.ofField.mem_iff, Projectivization.instNonemptyOfNontrivial, Projectivization.independent_iff, Projectivization.Subspace.span_eq_span_iff, Projectivization.Subspace.mem_carrier_iff, Projectivization.Subspace.span_eq_sInf, Projectivization.smul_mk, Projectivization.Subspace.span_iUnion, Projectivization.Subspace.mem_submodule_iff, OnePoint.equivProjectivization_apply_infinity
projectivizationSetoid πŸ“–CompOpβ€”

---

← Back to Index